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List of symbols

Scalars

c effective cohesion

cu  undrained shear strength

d increment of variables with depth

E isotropic Young's (elastic) modulus

Eoed oedometer (compression) modulus

f(σ) Mohr-Coulomb flow rule and plastic potential

G isotropic shear modulus

|J| determinant of the Jacobian matrix

K0 coefficient of rest earth pressure

Ka coefficient of active earth pressure

Kp coefficient of passive earth pressure

M, M0, ML compression modulus by different stress levels

M' rate of compression modulus

p',p0',pL' mean effective stress

pC' mean effective pre-consolidation pressure

pw steady state water pressure

q' deviatoric stress

u translation in x direction

v translation in y direction

w translation in z direction

x, y, z global coordinates

γdry dry unit weight of soil

γdat saturated unit weight of soil

γyz, γxz, γxy shear strains

ε1, ε2, ε3 principle strains

εx, εy, εz normal strains

εv volumetric strain

λ plastic multiplicator

ν Poisson' ratio

ξ, η, ζ parametric coordinates
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σ1, σ2, σ3 principle stresses

σx, σy, σz normal stresses

τyz, τxz, τxy shear stresses

φ effective friction angle

Vectors

p load vector

pe load vector of an element 

u global displacement vector

ue displacement vector of an element

v global nodal displacement vector

ve nodal displacement vector of an element

σ stress vector

σ' effective stress vector

ε strain vector

εe elastic strain vector

εp plastic strain vector

ε0 kinematic load vector

Δσ total stress increment

Δσe elastic predictor stress

Δσp plastic corrector stress

Δε total strain increment

Δεe elastic strain increment

Δεp plastic strain increment

Matrices

B strain matrix

D linear elastic material stiffness matrix

Dep elasto-plastic material stiffness matrix

J Jacobian matrix

K global element stiffness matrix

Ke stiffness matrix of an element 

L operator matrix

N shape function matrix
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Abbreviations

CRS constant rate of strain test

FE finite element

FEM finite element method

GEO geotechnical

GWL ground water level

IL  incremental loading test

NC normally consolidated

NLS non-linear soil

OC overconsolidated

OCR over-consolidation ratio

PI plasticity index
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Introduction

Firstly the purpose of this documentation is to show a short summary about the elasticity
in general 3D space and the theoretical background of using solid elements in a finite element
calculation. Secondly the main reason of this paper is to show the different materail models
which are implemented in the new version of FEM-Design software GEO module. Thirdly at
the end of this paper the reader can find some verification and validation examples of the shown
theories and problems.

1. Theory of elasticity in 3D

Before  the  description  of  the  theory of  the  geotechnical  module  and  the  theoretical
background  of  the  different  soil  material  models  in  FEM-Design  a  clarification  about  the
general elasticity is required. This is necessary because in 3D it won't need any approximation
respect to the geometry of the investigated element/structure such as the consideration of the
ratio between the length and the width/height of a bar or the simplifications by shells according
to the ratio between the width and thickness. 

In  general  (in  3D space)  the  displacement  field  contains  three  different  independent
variables. All of these variables depend on the coordinates of the solid material (Eq. 1.1).  Thus
the displacement vector of a solid element comprises three different variables. As usual in the
ordinary  finite  element  technique  these  variables  are  the  master  variables  and  after  the
calculation of these main variables (solving the equation system) the secondary variables (slave
variables) such as stresses can be determined. For more details about general elasticity see  [1],
[2], [3], [4] and [5].

u=[
u( x , y , z )
v ( x , y , z )
w (x , y , z)] (Eq. 1.1)

According to these facts the external load vector of a solid element also contains three different
parts.  These  loads  must  be  external  forces  because  it  is  necessary  to  ensure  the  work
compatibilty between the displacements and loads. Eq. 1.2 shows the external load vector which
belongs to a 3D solid material.

p=[
px(x , y , z )
py(x , y , z)
pz( x , y , z )] (Eq. 1.2)
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1.1 General definition of stresses

In a general 3D deformation problem the interpretation of the stresses are the following
(see Figure 1.1). Figure 1.1 also shows the positive direction of the stresses on an infinitesimally
small cuboid. Stress is a tensor which can be represented in Cartesian coordinate system with a
matrix. In the standard deformation theory the stress tensor must be symmetric according to the
Prager-Dracker postulates ([1], [2], [5] and [6]), therefore stresses are often written in vector
notation  based  on  the  Voight  notation  system.  With  the  vector  notation  there  are  only  six
independent stress components (Eq. 1.3). 

σ=[
σ x
σ y
σ z
τ yz
τ xz
τ xy

] (Eq. 1.3)

In the three dimensional space always exist three orthogonal directions where the shear
stresses are zero.  The name of these directions is the directions of principal stresses and the
normal stresses which belong to these directions are the principle stresses. Mathematically the
principle stresses and principle directions are the solution of the well-known eigenvalue problem
(see Eq. 1.4):

det(σ−σi I )=0 (Eq. 1.4)

where  I is the identity matrix. This equation gives three solutions for  σi  namely the principal
stresses. The sign convention of the principal stresses in FEM-Design are as follows:

σ 1⩾σ 2⩾σ 3 (Eq. 1.5)
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Figure 1.1 – General three-dimensional Cartesian coordinate system and sign convention for stresses
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Compression is negative, tension is positive. It is necessary for the mathematical formulation of
the material models (Chapter 3) to define the invariant of the stress tensor. For several material
models the first invariant of the stresses is very common (Eq. 1.6). 

p=
σ x+σ y+σ z

3
=

σ 1+σ 2+σ 3

3
(Eq. 1.6)

It can be see from Eq. 1.6 that this invariant is equivalent with the mean (effective) stress. This
is always the average value of the diagonal of the stress tensor (average value of the first three
elements of the stress vector Eq. 1.3)

1.2 General definition of strains

In a general 3D deformation problem the interpretation of the strains are the following
(see Figure 1.2). Figure 1.2 also shows the positive direction of the strains on an infinitesimally
small cube. Strain is a tensor which can be represented in Cartesian coordinate system with a
matrix.  In  the  standard  deformation  theory  the  strain  tensor  must  be  symmetric  according,
therefore strains are often written in vector notation based on the Voight notation system. With
the vector notation there are only six independent strain components (Eq. 1.7).
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Figure 1.2 – General sign convention for strains in three-dimensional Cartesian coordinate system
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ε=[
ε x
ε y
ε z
γ yz
γ xz
γ xy

] (Eq. 1.7)

In Eq. 1.7 the elements of the strain vector (according to Fig. 1.2):

εx=
∂ u
∂ x

; εy=
∂v
∂ y

; εz=
∂ w
∂ z

(Eq. 1.8a)

γyz=
∂ v
∂ z

+
∂w
∂ y

; γxz=
∂u
∂ z

+
∂ w
∂ x

; γxy=
∂u
∂ y

+
∂ v
∂ x

(Eq. 1.8b)

Thus the simplified mathematical connection between the strains and displacements (according
to the small deformation theory):

ε=L u (Eq. 1.9)

where L is the operator matrix:

L=[
∂
∂ x

0 0

0 ∂
∂ y

0

0 0 ∂
∂ z

0 ∂
∂ z

∂
∂ y

∂
∂ z

0 ∂
∂ x

∂
∂ y

∂
∂ x

0
] (Eq. 1.10)

In the three dimensional space always exist three orthogonal directions where the shear
strains are zero.  The name of these directions is the direction of principal strains and the strains
which belong to these directions are the principle strains. Mathematically the principle strains
and principle directions are the solution of the well-known eigenvalue problem (see Eq. 1.11):

det(ε−εi I)=0 (Eq. 1.11)

where  I is the identity matrix. This equation gives three solutions for  εi  namely the principal
strains. The sign convention of the principal strains in FEM-Design are as follows:

ε 1⩾ε 2⩾ε 3 (Eq. 1.12)

Based on the co-axiality rule by isotropic elasticity the directions of principle stresses and the
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directions of principle strains coincide each other.

As we mentioned at stresses the invariants of the tensors are very common variables
when creating and using material models. By strains the often used is the first invariant of the
strain matrix which shows the volume changing of the element thus the name of this invariant is
the volumetric strain(see Eq. 1.13).

ε v=ε x+ε y+ε z=ε 1+ε 2+ε 3 (Eq. 1.13)

1.3 The effect of water pressure and effective stresses

The material models are the mathematical description (connection) between the stresses
and  strains.  By  soil  material  models  this  mathematical  description  always  gives  us  the
connection between the so called effective stress tensor and strain tensor. Therefore according to
Terzaghi's principle the stress vector in the soil divided into effective stresses and water pressure
(Eq. 1.14 and see [7]).

σ=σ '+σw (Eq. 1.14)

Water pressure are provided by water in the pores. Positive normal stress components represent
tension and negative normal stress components represents compression. The water pressure
is fully isotropic thus the stress vector which represent the effect of water (see Fig. 1.3):

σw=[
pw

pw

pw

0
0
0
] (Eq. 1.15)

All of the mentioned material models in this documentation is expressed as a relationship
between the effective stresses and strains.  Therefore we denote the effective stresses with a
prime (') in our equations:

σ '=σ−σw (Eq. 1.16)

With the effective stresses the former mentioned principle stresses and invariants can be
expressed. Based on this consideration the mean effective stress:
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p ' =
σ x '+σ y ' +σ z '

3
=

σ 1 ' +σ 2 '+σ 3 '

3
(Eq. 1.17)
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Figure 1.3 – The visualization of the effect of water pressure on effective stresses
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2. Solid elements

By modelling the soil skeleton in three-dimensional space the discretization of the soil
also  need  to  be  three-dimensional  below the  structre.  By this  geometrical  finitization  solid
elements are inescapeable. In the next chapter the reader can find the different solid element
types concerning the different element shapes (nodes) in FEM-Design.

2.1 Element types

Basically in FEM-Design during the geometrical finitization the general mesh generator
provides four basic solid elements. All of these basic elements exist in linear form (standard -
linear shape functions) and in quadratic form (fine - quadratic shape functions). According to
Eq. 1.10 the shape functions of the solid elements must have C0 continuity [8], [9].

The next figures (Fig. 2.1-2.4) show the different element types in standard and fine
cases. The ξ, η, ζ coordinates are the parametric coordinates of the elements which are necessary
to express the element stiffness matrices and load vectors of the solid elements. The global (x, y,
z) coordinates of the nodes and the transformation matrices between  ξ, η, ζ coordinates and x, y,
z coordinates give us the unequivocal relationship between the two systems if the finite element
mesh is correct. 

Table 1 also shows the number of the nodes by the different available elements. In Fig.
2.1-2.4 the origins of the parametric  coordinate system are also obvious.  The midnodes are
always lying on the half (midpoint) of the edges and in the middle of the sides.

Number of nodes Standard (linear shape functions) Fine (quadratic shape functions)

Tetrahedron 4 10

Pyramid 5 14

Wedge/Prism 6 18

Hexahedron 8 27

Table 1 – The number of nodes by standard and fine solid elements

The origin of the tetrahedron element is at a corner node. Thus the parametric coordinates of the
ξ, η, ζ system are between 0 and +1. The linear and the quadratic tetrahedron elements have 4
and 10 nodes respectively (see Fig. 2.1).
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The parametric coordinate system origins from the middle of the pyramid elements. Therefore
the  ξ, η, ζ coordinates are between –1 and +1.  The linear and the quadratic pyramid elements
have 5 and 14 nodes respectively (see Fig. 2.2).

The  parametric  coordinate  system  origins  from  the  middle  of  the  wedge/prism  elements.
Therefore the ξ, η coordinates are between 0 and +1 and the ζ coordinates are between –1 and
+1. The linear and the quadratic wedge/prism elements have 6 and 18 nodes respectively (see
Fig. 2.3).

14

Figure 2.1 – The 4-node and the 10-node tetrahedron finite element in parametric coordinate system
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Figure 2.2 – The 5-node and the 14-node pyramid finite element in parametric coordinate system
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The  parametric  coordinate  system  origins  from  the  middle  of  the  hexahedron  elements.
Therefore  the  ξ,  η,  ζ coordinates  are  between  –1  and  +1.  The  linear  and  the  quadratic
hexahedron elements have 8 and 27 nodes respectively (see Fig. 2.4).

15

Figure 2.3 – The 6-node and the 18-node wedge/prism finite element in parametric coordinate system
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Figure 2.4 – The 8-node and the 27-node hexahedron finite element in parametric coordinate system
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2.2 Integration points

The number of integration points also important besides the node number. According to
the  fact  that  the  material  nonlinearity  and  the  calculation  of  the  element  stiffness  matrices
depend on the stress state of the integration points with a quadratic (fine) element group more
accurate result can be reached [10]. By the non-linear calculation in every load-increments the
stiffness matrices are calculated with numerical integration based on the stress results coming
from the former load-step. 

Table  2  shows  the  number  of  integration  points  respect  to  the  node  number  of  the
element.  Theoretically  the  quadratic  element  group gives  us  more  accurate  results  but  it  is
important that with the same element number, the computation takes more time because the size
of the coefficient matrix is larger than with linear elements [8], [9]. 

The position and the number of integration points are also important when the effect of
different locking (shear and volumetric, [11], [12] and [13]) and hourglassing come into view.
Therefore in this documentation we give the number of intergation points and the position of
intergation  points  to  avoid  any  misunderstanding.  Fig.  2.5-2.8  shows  these  numbers  and
positions by the different element types.

Number of integration points

4-node tetrahedron 1

5-node pyramid 5

6-node wedge/prism 9

8-node hexahedron 8

10-node tetrahedron 15

14-node pyramid 13

18-node wedge/prism 18

27-node hexahedron 27

Table 2 – The number of integration points by different element types

16

Figure 2.5 – The integration points of 4-node and 10-node tetrahedron finite element
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Figure 2.7 – The integration points of 6-node and 18-node tetrahedron finite element
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Figure 2.6 – The integration points of 5-node and 14-node tetrahedron finite element 
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2.3 General 3D mesh generator

If “Calculate soil as solid element” is active FEM-Design automatically generates 3D
finite elements for the SOIL object and compatible 2D and 1D mesh for the surface and line
elements. FEM-Design 15 prefers to create hexahedron elements if possible but there are some
geometrical  cases where it  uses tetrahedron,  pyramid and wedge/prism elements in order  to
build an optimal spatial mesh. The 3D mesh can handle general shape of solids with geometrical
situations considering boundary and inner geometry (see Fig. 2.9).
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Figure 2.8 – The integration points of 8-node and 27-node tetrahedron finite element
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3. Material models

In geomechanics the finite element method (FEM) is widely used for analyzing both
ultimate limit states and servicebility limit states. FEM modelling of a geotechnical problem can
offer insight into how stresses and strains distribute within the soil. This requires constitutive
soil  models  (material  models)  that  can  predict  stiffness  and strength.  With  other  words  the
deformation and the resistance of the soils. When the test data from the laboratory are reliable
the results of the model should compare to them. For further information about soil material
models and its connection with finite element calculation see: [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33] and [34].

The behaviour of soils may be modelled at different accuracy levels. In the mechanical
computations  the  material  model  is  the  mathematical  representation  of  the  stress-strain
relationship. In FEM-Design there are three different material models for soils. FEM-Design
and its soil material models have been developed to perform mechanical computations of certain
geotechnical  problems.  Keep  in  mind  that  the  finite  element  simulation  always  only  an
approximation of the reality. This fact involves unavoidable modelling and numerical errors. It
requires a different way of seeing to use the geotechnical model of FEM-Design because the
accuracy of the model  highly depends on the proficiency of the user.  The users must  have
experience to modelling a problem, understanding the different soil models (and their purposes,
limitations) and ability to evaluate the reliability of the mechanical results. (Similarly like other
FE modelling but with more attention.)

3.1 Linear elastic material model

The linear elastic, isotropic material model is based on the general Hooke's law. This one
is  the  most  simple  stress-strain  relationship.  In  this  case  only  two  material  parameters  are
independent [1], [5]. If the E (Young's modulus) and the ν (Poisson's ratio) are given the third
paramater is not independent. Namely the  G  (shear modulus) can be expressed with Eq. 3.1.
Although the linear elastic model only descripe the real behaviour of soils very poorly. It can be
use to model very stiff subsoils, such as rocks, bedrocks. In this model the stress states are not
limited at all, thus infinite stresses can arise according to the limitless strength. 

 G=
E

2(1+ν )
(Eq. 3.1)

The linear elastic, isotropic material model gives us the relationship between the effective stress
vector and strain vector. In matrix equation form Eq. 3.2 shows the relationship between them:

σ '=Dε (Eq. 3.2)

where D is the material stiffness matrix (Eq. 3.3).
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D=
E

(1+ν )(1−2ν ) [
1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0

0 0 0
1−2ν

2
0 0

0 0 0 0
1−2ν

2
0

0 0 0 0 0
1−2ν

2

] (Eq. 3.3)

Based on Eq. 3.1 the 4/4, 5/5 and 6/6 elements of D matrix are equal to the shear modulus. The
1/1, 2/2 and 3/3 elements of D matrix are the so-called oedometer modulus (Eoed) or with another
name  the  compression  modulus  (M).  Thus  the  relationship  between  Young's  modulus  and
compression modulus:

Eoed=M =
E (1−ν )

(1+ν )(1−2ν )
; E=

Eoed (1+ν )(1−2ν )

(1−ν )
; E=

M (1+ν )(1−2ν )

(1−ν )
(Eq. 3.4)

3.2 Mohr-Coulomb material model

The  associated  linear  elastic  perfectly-plastic  Mohr-Coulomb  model  imply  four
independent material parameters (see [35], [36] and [37]).  The E (Young's modulus) and the ν
(Poisson's ratio) have similar importance than in linear elasticity but by this material model two
other  parameters,  namely  the  φ friction  angle  and  the  c cohesion  are  needed.  These  to
parameters represent the strength properties of the soils. For each soil layers constant average
material properties concidered but respect to a reference level settings the elastic parameters can
be linearly various with depth. In this form the Mohr-Coulomb model does not include the stress
dependency of the compression modulus. Effective stress states at failure are well described in
drained situation using this criterion with effective strength parameters (φ and c). For undrained
material the Mohr-Coulomb model may be used with zero friction angle and with the undrained
shear strength (cu) for cohesion. In that case note that the model does not contain the increasing
of shear strength with consolidation (see Fig. 3.1).
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3.2.1 The associated elasto-plastic material model

In FEM-Design the Mohr-Coulomb model is a so-called associated elasto-plastic model.
In this case the  f(σ) flow rule (flow surface) which depends on the stress is equivalent to the
plastic  potential  function which show us  the direction of plastic  strain increment.  With this
approximation the material  stiffness matrices and the global structural  stiffness matrices are
symmetric. This is an advantage because the calculaton is time-saving.

The fundamental relation in a small strain plasticity is that a small strain increment is
composed of an elastic and a plastic part (see [36], [38], [39] and [40]):

d ε=d ε
e
+d ε

p (Eq. 3.5)

In general perfect plasticity  the plastic strains occur during yielding when

f (σ)=0 (Eq. 3.6)

and 

(∂ f
∂σ )

T

d σ=0 (Eq. 3.7)

where f(σ) is the mentioned flow rule (yield function) and σ is the stress vector ([36], [38], [41]
and [42]). If the yield function f(σ) < 0, it means that after a small increment the stress state is
still  linear elastic.  With geometrical representation the stress state is located inside the flow
surface (see Chapter 3.2.2). If the yield function  f(σ) ≥ 0 (Eq. 3.6), it means that the stress state
reached  the  end  of  the  linear  elastic  behaviour.  In  this  case  there  will  be  a  plastic  strain
increment also. According to the normality rule (Eq. 3.7) the direction of the plastic strain is
given if the direction of the stress increment is known. In this stress state as an elastic stress
increment is related to an elastic strain increment by Hooke's law, using Eq. 3.5 gets:
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Figure 3.1 – Mohr's circles at yield, drained behaviour using effective strength parameters (left) and
undrained behaviour using undrained strength parameters
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d σ=Dd ε
e
=D(d ε−d ε

p
)=D d ε−D d ε

p (Eq. 3.8)

where D is the linear elastic material stiffness matrix (see Eq. 3.3). 

By finite element method a finite strain and finite stress increment are given in one load-step.
Therefore it looks reasonable to rearrange Eq. 3.8 to:

d σ=Dep d ε (Eq. 3.9)

where Dep is the so-called elasto-plastic material stiffness matrix. The following equations show
the compilation of this matrix. In general plasticity the plastic strain increments are derived from
a plastic  potential  f(σ)  which is  equivalent  with the  yield  function  if  the material  model  is
associated.

d ε
p
=d λ

∂ f
∂σ

(Eq. 3.10)

where λ is the plastic multiplicator (a positive multiplier). To derive Eq. 3.9 firstly combine Eq. 
3.8 and Eq. 3.10 into:

d σ=Ddε−d λD
∂ f
∂σ

(Eq. 3.11)

By subtitution Eq. 3.11 into Eq. 3.7 the  λ plastic multiplicator is found to be:

0=(∂ f
∂σ )

T

d σ=(∂ f
∂σ )

T

(D dε−d λ D
∂ f
∂σ ) (Eq. 3.12)

d λ=
(∂ f
∂σ )

T

D d ε

(∂ f
∂σ )

T

D
∂ f
∂σ

(Eq. 3.13)

Thus λ expressed by the known f(σ) and D. With Eq. 3.13 the elasto-plastic material stiffness
matrix is given:

Dep
=D−

D
∂ f
∂σ (∂ f

∂σ )
T

D

(∂ f
∂σ )

T

D
∂ f
∂σ

(Eq. 3.14)

Based on Eq. 3.14 it is obvious that the elasto-plastic material stiffness matrix is symmetric if
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the linear elastic perfectly plastic material model is associated (the yield function equivalent to
the plastic potential).

3.2.2 The Mohr-Coulomb failure criteria

By the Mohr-Coulomb linear elastic perfectly-plastic material model  the f(σ) yield 
function is:

f (σ ')=σ '1−σ '3+(σ '1+σ '3)sinφ−2ccosφ (Eq. 3.15)

where φ is the friction angle and the  c is  the cohesion [43].  Furthermore upon the strength
parameters  according  to  Chapter  1.3  this  yield  function  depends  on  the  effective  principle
stresses. Keep in mind that negative normal stress components represent compression.

This  criteria  (function)  comes  from the  Mohr-Coulomb's  theory.  With  the  representation  of
Mohr's circle this function also can be defined as follows. In Fig. 3.2 or 3.4 there is a blue
triangle. Lets write the sine funcion on this right-angled triangle with the notation of the figures:

[c cotφ −(σ 3 '+σ 1 '

2 )]sinφ=−(σ 3 '−σ 1 '

2 ) (Eq. 3.16)

Rearrange this equation:

2c cosφ−(σ 3 '+σ 1 ') sinφ =−(σ 3 '−σ 1 ') (Eq. 3.17)

With the consideration that negative normal stresses represent compression, Eq. 3.18 can be
formed.

0=(σ 1 '−σ 3 ')+(σ 1 '+σ 3 ')sinφ−2ccosφ (Eq. 3.18)

Eq. 3.18 is equivalent with Eq. 3.15.

The active and passive stress state of earth pressure also represented with Eq. 3.17. 

Fig. 3.2 shows a stress state which represents an active state of earth pressure [44]. The third
effective principle stress is the minimum principle stress (compression is negative, see Eq. 1.5)
and the first effective principle stress is the maximum principle stress.
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Based on this relationship and rearranging Eq. 3.17:

2 c cosφ+σ 3 '(1−sinφ )=σ 1 '(1+sinφ ) (Eq. 3.19)

In  active  stress  state  regroup Eq.  3.19 the  first  (maximum) effective  principle  stress  is  the
following:

2 c
cosφ

(1+sinφ )
+σ 3 '

(1−sinφ )

(1+sinφ )
=σ 1 ' (Eq. 3.20)

Using trigonometric relationships this formula is equivalent with Eq. 3.21.

2c tan(45o
−

φ
2 )+σ 3 ' tan 2

(45o
−

φ
2 )=σ 1 ' (Eq. 3.21)

Rewrite the contexts in the pharenthesis with the well-known notations1:

2 c √Ka+σ 3 ' K a=σ 1 ' (Eq. 3.22)

The failure surface and the direction of the mobilized shear resistance (shear strength) in active

1 Remember that the earth pressure at rest comes from the well-known Jáky's formula [44]. This formula shows the
proportionality between the  effective  vertical  and  horizontal  earth  pressure  at  rest.  Based  on Jáky this  earth
pressure coefficient at rest: K0=1−sinφ= ν

1−ν
. Thus there is an unequivocal connection between the

frictional angle and Poisson's ratio: ν=
1−sinφ

2−sinφ
or φ=arcsin(1−2ν

1−ν ) .
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Figure 3.2 – Mohr's circle at active state
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stress state can be see in Fig. 3.3.

Fig. 3.4 shows a stress state which represents a passive state of earth pressure [44]. 

Based on Eq 1.5 and rearranging Eq. 3.17:

−2ccosφ+σ 1 '(1+sinφ )=σ 3 '(1−sinφ ) (Eq. 3.23)

In passive stress state regroup Eq. 3.19 the third (minimum) effective principle stress is the
following:
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Figure 3.4 – Mohr's circle at passive state
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Figure 3.3 – Failure at active state
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−2 c
cosφ

(1−sinφ )
+σ 1 '

(1+sinφ )

(1−sinφ )
=σ 3 ' (Eq. 3.24)

Using trigonometric relationships this formula is equivalent with Eq. 3.25.

−2c tan(45o
+

φ
2 )+σ 1 ' tan2

(45o
+

φ
2 )=σ 3 ' (Eq. 3.25)

Rewrite the contexts in the pharenthesis with the well-known notations:

−2c√ K p+σ 1 ' K p=σ 3 ' (Eq. 3.26)

The failure surface and the direction of the mobilized shear resistance (shear strength) in passive
stress state can be see at Fig. 3.5.

Fig. 3.6 shows the 3D visalization of the Mohr-Coulomb failure surface in the principle stress
space. One can see that it is a closed hypersurface in stress space and at the tensioned octant
there is an apex [36]. Another popular view of the Mohr-Coulomb's surface can be see in Fig.
3.7 in front of the axis of hydrostatic pressure. In this view the section of the yield surface is an
irregular hexagon. These visualizations are equivalent to the mathematical formula (Eq. 3.15) of
Mohr-Coulomb criteria in a general 3D stress state.
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Figure 3.5 – Failure at passive state
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Figure 3.6 – The Mohr-Coulomb failure surface in principle stress space
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Figure 3.7 – The geometrical representation of the Mohr-Coulomb failure surface in π section
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3.2.3. Returning map

For a finite strain increment the integration on Eq. 3.8 yields a finite stress increment.

Δσ=DΔε
e
=D(Δ ε−Δε

p
)=DΔε−DΔε

p
=Δσ

e
−Δσ

p (Eq. 3.27)

In this context the  Δσe is usually referred to as the elastic predictor and the  Δσp as the plastic
corrector.  In FE calculation finite load-increments are applied during the non-linear solution
therefore after a load-step the stresses are assumed with an elastic predictor, see Eq. 3.28.

σB=σA+Δσ
e (Eq. 3.28)

But if this stress state is not valid based on the yield function (Eq. 3.15) an updated stress state is
needed. The updated stresses are as follows (see also Fig. 3.8):

σC=σA+Δσ (Eq. 3.29)

σC=σB−Δσ
p (Eq. 3.30)

According to the normality rule (see Eq. 3.7 and Eq. 3.10) if the plasticity model is associated,
the  plastic  corrector  perpendicular  to  the  yield  surface.  Basically  this  is  the  returning  map
algorithm which is applied if during the non-linear calculation the stress state with the predictor
elastic stress increment (Eq. 3.28) is outside the flow surface (see Fig. 3.8).

28

Figure 3.8 – The theory of returning map algorithm
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3.3 Mean effective stress soil model for soft Scandinavian clays

When stress (load) is removed from a consolidated soil the soil will rebound, regaining
some of the volume it had lost in the consolidation process (see [45], [46] and [47]). If the stress
(load)  is  reapplied,  the  soil  will  consolidate  again.  The soil  which had its  load removed is
considered  to  be overconsolidated.  This  is  the  case  for  soils  which  have  previously  had
glaciers on them. The highest stress that it has been subjected to is termed the preconsolidation
stress.  A  soil  which  is  currently  experiencing  its  highest  stress  is  said  to  be normally
consolidated.  A soil  could  be  considered underconsolidated immediately after  a  new load is
applied but before the excess pore water pressure has had time to dissipate. In FEM-Design
always  supposed that  the excess  water  pressure has  had time to  dissipate  thus  the  analysis
always consider final state respect to time (time is not a variable). 

3.3.1 The over-consolidation ratio

The over consolidation ratio or OCR is defined as the highest stress experienced (pC'
mean effective  pre-consolidation  pressure)  divided by the  current  stress  (p0'  mean effective
stress)  see  Eq.  3.31.  A soil  which  is  currently  experiencing  its  highest  stress  is  said  to
be normally consolidated and to have an OCR of one. 

OCR=
pC '

p0 '
(Eq. 3.31)

A soil is said to be normally consolidated (NC) if the current overburden pressure (column of
soil  overlying  the  plane  of  consideration)  is  the  largest  to  which  the  mass  has  ever  been
subjected.  It  has been found by experience that prior stresses on a soil  element produce an
imprint or stress history that is retained by the soil structure until a new stress state exceeds the
maximum previous one. The soil is said to be overconsolidated or preconsolidated (OC) if the
stress  history  involves  a  stress  state  larger  than  the  present  overburden  pressure  [48].
Overconsolidated  cohesive  soils  have  received  considerable  attention.  The  behavior  of
overconsolidated soils under new loads is different from that of normally consolidated soils, so
it  is  important  to  be  able  to  recognize  the  occurrence.  As  mentioned  earlier  a normally
consolidated soil has OCR = 1 and an overconsolidated soil has OCR > 1. OCR values of 1-3
are obtained for lightly overconsolidated soils. Heavily overconsolidated soils might have OCRs
> 6 to 8. An underconsolidated soil will have OCR < 1. In this case the soil is still consolidating.
Over- or preconsolidation may be caused by a geologically deposited depth of overburden hat
has  since  partially  eroded  away  [49].  Of  at  least  equally  common  occurrence  are
preconsolidation effects that result from shrinkage stresses produced by alternating wet and dry
cycles.  These  readily  occur  in  arid  and  semiarid  regions  but  can  occur  in  more  moderate
climates as well. Chemical actions from naturally occurring compounds may aid in producing an
overconsolidated soil deposit. Where overconsolidation occurs from shrinkage, it is common for
only the top 1 to 3 meters to be overconsolidated and the underlying material to be normally
consolidated.  The OCR grades from a high value at  or near  the ground surface to 1 at  the
normally consolidated interface.
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The current mean effective pressure p0'  can be computed reasonably well, but the value of the
mean  effective  preconsolidation  pressure  pC' is  at  best  an  estimate,  making  a  reliable
computation for OCR difficult. The only method at present that is reasonably reliable is to use
the consolidation test to obtain  pC'.  Preconsolidation pressure is the maximum effective  stress
that a particular soil sample has sustained in the past. This quantity is important in geotechnical
engineering, particularly for finding the expected settlement  of foundations and embankments
[48]. 

Preconsolidation pressure cannot be measured directly, but can be estimated using a number of
different strategies. Samples taken from the field are subjected to a variety of tests, like the
constant rate of strain test (CRS) or the incremental loading test (IL). These tests can be costly
due to expensive equipment and the long period of time they require. It is important to execute
these  tests  precisely  to  ensure  an  accurate  resulting  plot.  There  are  various  methods  for
determining the  preconsolidation pressure from lab data.  The data  is  usually arranged on a
semilog plot of the mean effective stress (p') versus the compression modulus (M). The constant
rate of strain test approach for soil testing was developed initially as a means of measuring the
properties of a soil. Because it is easy to automate, the CRS test method offers the advantage of
continuous data collection during the loading process. Also from the test results we can get the
stress-strain relationship of the soil specimen during the loading period. One can see these CRS
results in Fig. 3.9 and 3.10 (see also [50], [51] and [52]).
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Figure 3.9 – Typical CRS test result [50] 
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3.3.2 Typical characterization of Scandinavian clays

Fig. 3.9 and 3.10 show that the compression modulus (Eq. 3.4) is stress dependant by
some Scandinavian clays [53], [54] and [55]. If we would like to consider this effect during the
settlement  calculation  an  updated  compression  modulus  (and  because  there  is  uneqiuvocal
relationship with Young's modulus Eq. 3.4 and shear modulus Eq. 3.1), an updated material
stiffness matrix is needed in every load-steps. In FEM-Design to follow this behaviour (Fig. 3.9
and 3.10)  over-consolidated  material  model  is  available  with  two different  input  dialogs  to
describe the characterization of the stress-dependency.
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Figure 3.10 – Idealized CRS test result
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3.3.3 The consideration of the stress dependency of compression modulus in Scandinavian 
clays

Based on Chapter  3.3.1,  Eq.  3.31  and Fig.  3.10  the  compression  modulus  is  stress-
dependent in some clays, such as Scandinavian clays [50], [51], [53], [55]. Based on Fig. 3.10
and Eq. 1.6 and 1.17 the considered compression modulus in FEM-Design after one load step
depends on the first invariant of stresses in the former load-step. 

The characteristics of the mean effective stress and compression modulus diagrams are
inputs  in  FEM-Design  (see  Fig.  3.11).  There  are  two  different  options  to  give  the  stress-
dependency in FEM-Design (over consolidated and generic model, see Fig. 3.11). Left side of
Fig. 3.11 shows the well-known swedish (norwegian, danish) characteristic of „mean effective
stress”  -  „compression  modulus”  diagram  (over  consolidated).  In  the  right  side,  after  the
preconsolidation  mean  effective  stress  the  user  can  implement  an  arbitrary  dependency  of
compression modulus in the function of mean effective stresses (generic). 

After every load steps the material stiffness matrix will be updated with the relevant
values  of  elastic  constants  based  on  the  diagrams  (see  Eq.  3.3  and  Eq.  4.16).  For  further
information please check Chapter 4.5 and 5.3 also.
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Figure 3.11 – The typified and the general stress-dependency for over-consolidated soils,
only in this dialogs the p' values (compressions) have positive signs instead of negative
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4. Finite element formulation
In this chapter the described equations and vectors in some case only belong to the solid

element (soil) type thus not general for every finite element types, for further information on
other element types please check the general „theory book” of FEM-Design or [8] and [9].

4.1 Solid element matrices and vectors

The approximation of the displacement field (Eq. 1.1) above an element can expressed
with the following equation:

ue=N ve (Eq. 4.1)

where  N is  a  matrix  containing  the  shape  functions  of  the  element  and  ve is  the  nodal
displacements  respect  to  the  element.  According  to  Eq.  1.9  the  connection  between  the
diplacements and strains are as follows for an element:

εe=L ue (Eq. 4.2)

With the substitution of Eq. 4.1 into 4.2 this equation occurs:

εe=L N ve (Eq. 4.3)

The product of the first two part of the right side of Eq. 4.3 is the strain matrix. From this point 
we use the following notation:

B=L N (Eq. 4.4)

During the FE calculation after the mathematical (Chapter 2.1) and geometrical (Chapter 2.3)
finitization the calculation of the stiffness matrices of the elements is coming. In general Eq. 4.5
shows the method of the calculation of the stiffness matrix for an element.  

K e=∫
V e

BT D B dV =∫
V e

(L N(ξ ,η ,ζ ))
T D(L N(ξ ,η ,ζ ))∣J (ξ ,η ,ζ )∣dV loc (Eq. 4.5)

where addition to the presented values and variables D is the material model matrix (see Eq. 3.3
or Eq. 3.14) and  |J|  is the determinant of the Jacobian matrix which gives us the geometrical
connection between the global and local (parametric) coordinate systems. The Jacobian matrix
can expressed as follows:
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J=[
∂ x
∂ξ

∂ y
∂ξ

∂ z
∂ξ

∂ x
∂η

∂ y
∂η

∂ z
∂η

∂ x
∂ζ

∂ y
∂ζ

∂ z
∂ζ

]=[
∂

∂ξ
∂

∂η
∂

∂ζ
]nT[

x1 y1 z1

x2 y2 z2

x3 y3 z3

... ... ...
]

glob

(Eq. 4.6)

nT
=[N 1 N 2 N 3 ...] (Eq. 4.7)

where  Ni is the shape function of a node and the right side of Eq. 4.6 is  the matrix of the
coordinates of the element nodes in global coordinate system. 

The finite element calculations are unimaginable with analytical integration (see Eq. 4.5) thus
during the calculation of the stiffness matrices numerical integration is necessary. Rewriting Eq.
4.5 gives us the following formula:

Φ(ξ ,η ,ζ )=BT D B (Eq. 4.8)

K e=∑
i=1

n

w i Φ(ξ i ,η i ,ζ i) (Eq. 4.9)

where Eq. 4.9 is the numerical integration with the well-known Gauss-Legendre formula (see
Table 2) and wi is the weigths of the different integration points.

After the calculation of the element stiffness matrices the calculation of the element load vectors
is  necessary.  In  addition  to  external  forces  and  self-weights,  kinematic  loads  are  also  an
important load type. The calculation method of the kinematic loads are as follows:

pe=∫
V e

BT Dε0 dV (Eq. 4.10)

where ε0 is the vector of the kinematic loads on one element (such as thermal load or self-stress
state (stress load)). For the rest of the load types (such as line load, surface load, point load), Eq.
4.11 shows the calculation method of the element load vectors.

pe=∫
V e

NT pV dV+∫
A

NA
T pA dA+∑

i=1

n

Ni
T pi (Eq. 4.11)

The first  part  of  the  right  side  of  Eq.  4.11  represent  the  calculation  of  the  load  vector  for
volumetric loads, the second one for the surface loads and the third one for point loads.
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4.2 Global equation system

In the former chapter the focus was on the stiffness matrices and load vectors of an
element.  In real life during the gemetrical finitization the modelled structure is splitted into
several finite elements thus to calculate the displacements which are the main (master) variables
(see Chapter 1) the compilation of the stiffness matrices and load vectors is necessary. After this
step the global equation system of the structure can write as in Eq. 4.12.

K v=p (Eq. 4.12)

where  K  is  the  global  stiffness  matrix,  p  is  the  global  load  vector  and  v is  the  global
displacement vector which contains the displacements of the nodes. 

4.3 Calculation of stresses

The final step of the finite element calculation is to express the stresses (internal forces).
According to the finite element calculation the stresses are the slave (secondary) variables (see
Chapter 1), thus during the finite element calculation only the essential boundary conditions
(such as translation or rotation) are insured and the natural boundary conditions (such as strains,
curvatures, bending moments or stresses) are not insured. In means that the convergence is very
fast  when the displacements  are  analyzed but  the convergence  can be very poor  if  stresses
(internal forces) analyzed. Therefore it is very important to use an accurate finite element mesh
and element type group for the examined structure if we would like adequate results for stresses.
The displacements of an arbitrary „P” point  can be expressed with Eq. 4.13. 

uP=NP ve (Eq. 4.13)

where  NP  is the matrix of the shape functions – which belongs to the corresponding element
which contains the selected „P” point – evaluated in the selected „P” point and ve is the nodal
displacements of  the corresponding element. With the displacements of the selected point the
calculation of the stresses comes from Eq. 4.14 (see Eq. 4.3).

εP=(L N)P ve (Eq. 4.14)

With the strains the stresses can be expressed with the following equation:

σP=D(εP−ε0 P) (Eq. 4.15)
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where  ε0P is the kinematic load in the selected „P” point.

4.4 The basics of non-linear calculation method in FEM-Design

When the non-linear soil calculation is active in FEM-Design, during the calculation the
small displacement theory (small strains, geometrical linearity) is considered. It means that the
nonlinearity  comes  from  the  consideration  of  nonlinear  material  models  (Mohr-Coulomb
plasticity, consideration of Scandinavian clays, etc.). It is an adequate assumption because in
general  when the  settlements  are  out  of  small  displacement  theory the  foundation  is  failed
already due to plasticity.

During the nonlinear calculation  Eq. 4.12 will  be solved several times respect to the
relevant  load  steps  (see  Fig.  4.1).  It  is  important  that  according  to  Eq.  3.3  and  3.14  the
coefficient global stiffness matrix (Eq. 4.12) is always symmetric.

By the non-linear calculation in every load steps the element stiffness matrices will be
calculated with Eq. 4.16 and 4.17.

K e=∫
V e

BT D B dV =∫
V e

(L N(ξ ,η ,ζ ))
T D(ξ ,η ,ζ )(L N(ξ ,η ,ζ ))∣J(ξ ,η ,ζ )∣dV loc (Eq. 4.16)

K e=∫
V e

BT Dep B dV      (Eq. 4.17)

The difference between Eq. 4.16 and Eq. 4.5 is that the material stiffness matrices depends on
the  former  stress  state  of  the  element  (because  the  compression  modulus  could  be  stress-
dependent, see Chapter 3.3), therefore it could be different in every integration points. When the
Mohr-Coulomb plasticity is considered the material stiffness matrices (Eq. 4.17, Dep) based on
Eq. 3.14.

4.4.1 The explicit solver method

FEM-Design uses explicit solver type to calculate the displacements of the structure if
non-linear soil calculation is active. Based on the theory of the explicit method in the current
load  step calculation the stresses  of  the former  step will  be used.  It  means  that  during the
calculation the material stiffness matrices (Eq. 4.16 and 4.17) in one load step will be calculated
based on the calculated stresses at the integration points (see Chapter 2.1) in the end of the
former load step. The whole calculation starting with an initial load step (see Fig. 4.1). After this
step the increment of the displacements and stresses will be calculated and based on these data
the next load step will be calculated until the total load reaches the 100 % of the applied load. It
means that due to the explicit method at the end always get a solution, but for example if the soil
reaches its load-bearing capacity the quantity of the displacements or volumetric strains will be
very large. In this case after the calculation „large nodal displacement” and/or „large volumetric
strain” messages will be appear.
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By a general  non-linear  problem the exact  solution is  not known (such as  the exact
deflection for a simple slab with an arbitrary geometry). In this case if the solver uses smaller
and smaller load-steps the calculated solution approaches the not known exact solution (see Fig.
4.1). It means that the solution converges to the exact solution (such as the stresses/internal
forces when using smaller and smaller finite element mesh size for a linear calculation). Thus a
non-linear calculation is very difficult because a sufficient finite element mesh is necessary for
the analyzed problem and also a sufficient load-step control.

4.4.2 Parameters to control the load-increments 

The non-linear soil calculation (NLS) option contains four control parameters to reach
the accurate final solution. These four parameters are as follows: initial load step [%], minimal
load step [‰], volume ratio of nonlinearly active elements in one step [%] and volume ratio of
plastic elements in one step [%]. By the calculation options it is optional to choose and consider
the Mohr-Coulomb plasticity or only the stress-dependency for Scandinavian clays (see Chapter
3.2 and 3.3). 

The meaning of the first two control parameters is obvious from Fig. 4.1. The „initial
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Figure 4.1 – Basic idea of the explicit solver method and the different types of load step controlling
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load step” is the amount of the first load step and must be given in percent [%] of the total load
(see. Fig. 4.1). The „minimal load step” is the smallest load step which is possible during the
calculation. It must be given in thousandths [‰] of the total load (see Fig. 4.2). It means that
during the finite element calculation the smallest load step will be this minimal load step value.
The third and the fourth mentioned control parameters are responsible for the automatic various
load stepping to reach more precise solution than the constant load-step calculation (see Fig
4.1). The „volume ratio of nonlinearly active elements in one step” parameter is responsible to
control the stress-dependant compression modulus. It means that during the calculation at most
these value of soil volume can change its compression modulus. The „volume ratio of plastic
elements in one step” parameter is responsible to control the Mohr-Coulomb plasticity. It means
that during the calculation at most these value of soil volume can change from elastic to plastic
condition. These two parameters must be given in percent [%]. To avoid infinitely small load-
steps the „minimal load step” overwrite these last two parameters if in one step the load step is
smaller than the minimal load step based on the third and fourth parameters. Thus in every case
the minimal value of the load step is at least equal to the minimal load step parameter (see Fig
4.1).

4.5 Consideration of different load phases

In FEM-Design the non-linear soil calculation (NLS) is implemented with consideration
of different phases. In this chapter the reader can find an introdution how these phases work and
in which phase what will be calculated in the different load-combinations and material models.
In FEM-Design there are three different automatic phases which will be explained here. The
non-linear  soil  calculation  only  valid  by  load-combination  calculations.  Fig.  4.3  shows  the
explained example.

38

Figure 4.2 – The calculation options for non-linear soil analysis



FEM-Design 15 

4.5.1 Phase 0

In Phase 0, FEM-Design calculates the stresses based on an analytical approximation
according to the earth pressure coefficient at rest (K0, see the first footnote in Chapter 3.2.2) for
the given initial (intact) ground level. This is important for the OCR calculations, because we
need these pressure values for the initial ground level. See the repeated equation below from
Chapter 3.3.1. Fig. 4.4 and 4.5 shows the mean effective stress  (p0') which comes from the
mentioned Phase 0 calculation. Based on these thoughts and Eq. 1.17 this p0' equal to:

p0 '=
σ x0 '+σ y0 '+σ z0 '

3
=

K0 σ z ' +K0 σ z ' +σ z '

3
=

2 K0σ z '+σ z '

3
=σ z '(2 K0+1

3 ) (Eq. 4.18)

When only the Mohr-Coulomb material model is in used these values do not have any
effect on the calculation because the compression modulus is independent from stresses in the
Mohr-Coulomb model during the linear elastic behaviour (before plasticity).

By the Scandinavian soft soil model see the meaning of the p0' value in Fig 4.4 and 4.5.
In FEM-Design in the result window the user can check the OCR values in the integration points
after the calculation, thus the user can check that the adjusted pC' values in the material models
are correct or not  (see Fig.  4.6).  This is  the first  reason why this  calculation in Phase 0 is
important.  The second reason is that by the soil definition the user can adjust two different
ground levels. One of these ground level is the initial (intact) ground level (see Fig. 4.3 and 4.5).
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Figure 4.3 – The consideration of earth pressures and external loads in different phases
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Based on this ground level the calculations of Eq. 4.18 are settled. The other ground level is the
final ground level (see Fig. 4.3) which affect the final finite element calculation. The details of
this final ground level is given in the next chapters (Chapter 4.5.2 and 4.5.3).
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Figure 4.4 – The consideration of stress dependent compression modulus,
only in this diagram the p' values (compressions) have positive signs instead of negative
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4.5.2 Phase 1

In this phase the first part of the real finite element calculation is happening. In Phase 1
the self-stress state of the soil will be calculated based on the final ground level (see Fig. 4.7). In
this phase only the self-weight of the soil is considered. It means that if none of the applied load
cases in the active load-combination contains the self-weight of the soil then this phase will be
skipped. 

This  phase  is  important  by  the  Mohr-Coulomb  material  model  and  by  the  soft
Scandinavian clay material model also, because due to the self-weight of the soil the intergation
points can be in plastic state, it depends on  the material parameters and the geometry also. 

By the Scandinavian soft clay material model this phase also important because based on
Fig. 4.4 and 4.7 the relevant compression modulus which need to be applied by the rest of the
loads (every other load cases in the load-combination above the self-weight of the soil)  are
defined according to this calculation.
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Figure 4.6 – An example for the different calculated OCR values with depth based on Phase 0 and pC'
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If the user defined an excavation (Fig. 4.7), it means that based on Phase 0 the soil stress
states under the excavation are below p0' values. Until the stress states of these points based on
the rest of the external loads (Fig. 4.3) do not reach  p0' values the compression modulus equal
to MUR. Practically it means that in the end Phase 2 at the excavation the settlements will be very
small as long as the stress states are below the calculated  p0'  in Phase 0. After  p0'  values the
settlements depends on the characteristics of the applied Scandinavian soft soil model.

If the user defined an embankment (Fig. 4.7), it means that based on Phase 0 the soil
stress states under the embankment are above p0'  values. The compression modulus of the soil
under the embankment depends on the rest of the external loads, because the stress states are
above  p0'  values (Fig.  4.4).  Practically it  means that  under  the embankment the settlements
depends on the characteristics of the applied Scandinavian soft soil model.

By the results if only the self-weight of the soil is applied in the NLS combination (no
external loads), the displacements belong to the displacements of the soil according to the self-
weight and in this case Phase 2 will be skipped. 

4.5.3 Phase 2

In this phase the rest of the loads in the combination will be considered (external loads,
Fig. 4.8). The considered elastic modulus in one load step depend on the stress states of the soil
what were calculated in Phase 1, considering Phase 0 (see Chapter 4.5.2). Phase 2 only active if
in the NLS combination contains not only the self-weight of the soil but also contain other
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Figure 4.7 – The consideration of stresses in the soil in Phase 1
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external loads. If Phase 2 exists then the settlements (displacements) at the end of the calculation
do  not  contain  the  displacements  what  comes  from  the  self-weight  of  the  soil  (what  was
calculated in Phase 1). Practically, it means that if Phase 1 and Phase 2 are also active, at the end
of  the  calculation  FEM-Design  subsracts  the  displacements  of  Phase  1  from  the  total
displacements (Phase 1 displacements + Phase 2 displacements). It is reasonable because the
calculations in Phase 1 only set the correct stress states of the soil for the adequate consideration
of the Mohr-Coulomb material model and Scandinavian soft clay model for the applied external
loads on the structure in the NLS load-combinations.
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Figure 4.8 – The consideration of external loads in Phase 2
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5. Soil problems with exact theoretical solutions in 3D

5.1 Verification and validation of linear elastic material model

Several elasticity problems is available with known exact solutions. As a benchmark
some  problems  and  results  will  be  demonstrate.  In  this  chapter  several  3D  linear  elastic
problems are described. The appropriate analytical solution may be found in the literature such
as [56], [57], [58], [59], [60], [61], [62] and [63].

5.1.1 Linear elastic deformation of a cuboid 

In this  chapter the main purpose is to certify the linear elastic deformation based on
general Hooke's law on a 2x2x2 m cuboid element with different supports and load cases (see
Fig. 5.1). Four different pure stress states were analyzed and after the FEM-Design calculations
the analytical solutions are also represented based on linear elasticity. The Young's modulus and
the Poisson's ratio were E = 1000 kN/m2 and ν = 0.3 respectively in all analyzed case. Based on
these two values the shear modulus G = 384.6 kN/m2 . The relevant coordinate system which is
valid for all figure in this subchapter can be seen in Fig. 5.2.
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Figure 5.1 – 2x2x2 m cuboid

Figure 5.2 – Directions of the global coordinate system (X green, Y red, Z blue) 
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5.1.1.1 Uniaxial loading

In this first case uniform vertical distributed surface load was applied on the top of the
cuboid element with σz = –10 kN/m2 intensity (Fig. 5.3). At the bottom there is a vertical surface
support. At two corner points of the bottom two other point supports were applied to ensure the
statically determinated system. 

Based on the FEM-Design calculation the following diplacement results revealed (see Fig. 5.4).

Based on the general Hook's law the theoretical results of these translations are the following:

uz=
σ z l z

E
=

−10⋅2
1000

=−0.020 m , ux=u y=−ν uz=0.3⋅0.020=0.006 m (Eq. 5.1)

The exact and the calculated values are very close to each other.
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Figure 5.3 – Uniaxial compression [σz  = – 10 kN/m2] and applied boundary conditions

Figure 5.4 – Corner point translations in X, Y and Z directions [mm]
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5.1.1.2 Shear loading

In this case shear load was applied on the cuboid element as distributed loads (see Fig.
5.5) with  τzy  = τyz  = –10 kN/m2 intensity. At the bottom there is a vertical surface support and
horizontally also at the left and right side (see Fig. 5.5). At the front bottom edge a horizontally
line support was also applied perpendicular to this edge to ensure statically determinancy. 

Based on the FEM-Design calculation the following diplacement results revealed (see Fig. 5.6).

Based on the general Hook's law the theoretical results of these translations are the following:

ux=uz=0 m , (Eq. 5.2)

according to the shear deformation and small displacement theory.

γ yz=
u y

l z

, u y=
τ yz

G
l z=

−10
384.6

2=−0.052m (Eq. 5.3)

The exact and the calculated values are very close to each other.
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Figure 5.5 – Shear loading  [τyz  = –10 kN/m2] and applied boundary conditions

Figure 5.6 – Corner point translations in X, Y and Z directions [mm]
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5.1.1.3 Biaxial loading

During a biaxial pure stress state σz  = –10 kN/m2 vertical and σy  = –5 kN/m2 distributed
surface loads were applied. At the bottom there is a vertical surface support and horizontally
also at the left, right and rear side (see Fig. 5.7). 

Based on the FEM-Design calculation the following diplacement results revealed (see Fig. 5.8).

Based on the general Hook's law the theoretical results of these translations are the following:

σ x=ν (σ y+σ z)=0.3((−5)+(−10))=−4.5
kN

m2
(Eq. 5.4)

according to the supports: 

ux=0m (Eq. 5.5)

According to Hooke's law:

u y=
σ y−ν (σ x+σ z)

E
l y=

(−5)−0.3((−4.5)+(−10))

1000
2=−0.0013m (Eq. 5.6)
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Figure 5.7 – Biaxial loading [σz  = –10 kN/m2 and σy  = –5 kN/m2] and applied boundary conditions

Figure 5.8 – Corner point translations in X, Y and Z directions [mm]
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uz=
σ z−ν (σ x+σ y)

E
l z=

(−10)−0.3((−4.5)+(−5))

1000
2=−0.0143m (Eq. 5.7)

The exact and the calculated values are very close to each other.
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5.1.1.4 Triaxial loading

During a triaxial pure stress state σz  = –10 kN/m2 vertical and σy = –5 kN/m2 and σx = –2 kN/m2

horizontal  distributed  surface  loads  were  applied.  At  the  bottom there  is  a  vertical  surface
support and horizontally also at the right and front side (see Fig. 5.9).

Based  on  the  FEM-Design  calculation  the  following  diplacement  results  revealed  (see  Fig.
5.10).

Based on the general Hook's law and considering the supports the theoretical results of these 
translations are the following:

ux=−
σ x−ν (σ y+σ z)

E
l x=−

(−2)−0.3((−5)+(−10))

1000
2=−0.005m (Eq. 5.8)

u y=
σ y−ν (σ x+σ z)

E
l y=

(−5)−0.3((−2)+(−10))

1000
2=−0.0028m (Eq. 5.9)

uz=
σ z−ν (σ x+σ y)

E
l z=

(−10)−0.3((−2)+(−5))

1000
2=−0.0158 m (Eq. 5.10)

The exact and the calculated values are very close to each other.
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Figure 5.9 – Triaxial loading [σz = –10 kN/m2 , σy = –5 kN/m2 and σx = –2 kN/m2] and applied boundary conditions

Figure 5.10 – Corner point translations in X, Y and Z directions [mm]
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5.1.2 Infinitely smooth and rigid foundation on linear elastic soil

The investigated problem is an infinitely smooth and rigid wall foundation on the top of
the ground level. The width (B = 2 m) and the height (H = 4 m) of the model space is shown in
Fig. 5.11. The calculation is executed in 3D therefore the length of the soil model and footing is
not relevant. In this case the length was 0.1 m. All of the vertical planes around the soil strata
were fixed horizontally, the botton plane horizontally and vertically. On the top of the ground
level a surface support was created and applied a uniform vertical displacement uz = 10 mm on it
to simulate a smooth rigid footing. The self-weight  γ was zero, the material model was linear
elastic, isotropic with E = 1333 kN/m2 and ν = 0.333. 

The finite element mesh and the displacement load is shown in Fig. 5.12. During the validation
fine element group (quadratic element group) was used. The average element size was 0.10 m.

The scaled displacements are shown in Fig. 5.13. The arising distributed forces and the resultant
force  under  smooth  rigid  foundation  were  calculated  from  the  finite  element  calculation.
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Figure 5.11 – The geometry of the problem (red arrows mean the uz=10 mm vertical displacement load)

Figure 5.12 – The finite element mesh and the applied displacement load on the top of the ground level
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Namely the resultant force is Fz  = 15.294 kN. A lowest value of the intensity of the distributed
force in the middle of the footing is –5.03 kN/m2 (compression). See Fig. 5.14 and 5.15 to check
the distribution of the calculated forces (reaction forces) under the footing along the base width. 

Based on [56] and [57] the analytical solution for the resultant force under the foundation is
given with Eq. 5.11.

F δ

E
=u z (Eq. 5.11)

where δ = 0.88 if the ratio of the H/(0.5B) = 4. H and B are the mentioned depth of the soil layer
and the width of the strip foundation. Based on this analytical solution this gives F = 15.15 kN
resultant force. The difference (error) between the finite element calculation and the analytical
solution is less than 1%.
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Figure 5.13 – The displacement field with the deformed mesh [mm] (50 times scaled up)

Figure 5.14 – The distribution of the forces under the foundation and the lowest value
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Fig. 5.16 shows the vertical stresses under the footing according to the applied uniform vertical
displacement uz = 10 mm.
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Figure 5.15 – Distribution of the forces with FE calculation and with the analytical solution

Figure 5.16 – Vertical stress distribution under the foundation [MPa]
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5.1.2 Infinitely flexible wall foundation on elastic Gibson-soil

According to [56] and [58] the problem is a half-space with linearly varying Young's
modulus with depth. The load is a distributed surface load on a strip with B = 2 m width (see
Fig. 5.17). All of the vertical planes around the soil strata were fixed horizontally, the botton
plane vertically. On the top of the ground level a uniform surface distributed load was applied
with qz = 10 kN/m2 intensity. The self-weight γ was zero, the material model was linear elastic,
isotropic with linearly increasing elastic constants. At the top of the soil layer Etop = 0.01 kN/m2

and and the inrcrement according to depth was d = 299 kN/m2/m, therefore at the botton of the
strata  Ebottom  = Etop+4d = 1196.01 kN/m2.  The Poisson's ratio was uniformly ν = 0.49. See the
distribution of the Young's modulus with depth in Fig 5.18.

The finite element  mesh and the distributed surface load is  shown in Fig.  5.19.  During the
validation fine element group (quadratic element group) was used. The average element size
was 0.10 m.
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Figure 5.17 – The geometry of the problem (red arrows mean qz=10 kN/m2 vertical distributed load)

Figure 5.18 – The linearly varying Young's modulus with depth
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The scaled displacements are shown in Fig. 5.20. The calculated settlement in the middle of the
area of the distributed load was uz = 47.54 mm. 

According to [56] and [58] the exact analytical solution is derived with ν = 0.5 but to avoid the
volumetric  locking [11]  the  allowable  Poisson's  ratio  in  FEM-Design is  ν  =  0.49 for  solid
elements.  Fig.  5.20  shows  that  under  the  ditributed  load  the  numerical  calculation  brought
almost uniform settlement. The analytical solution is given for infinite half-space. Respect to the
mentioned literatures the exact solution is given with Eq. 5.12.

qz

2α
=u z (Eq. 5.12)

54

Figure 5.19 – The finite element mesh and the applied distributed load on the top of the ground level

Figure 5.20 – The displacement field with the deformed mesh [mm] (10 times scaled up)
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where qz is the intensity of the distributed load and α is the increment of the shear modulus with
depth. In our case according to the given  Etop = 0.01 kN/m2 and Ebottom = 1196 kN/m2 and with
ν=0.49  the shear moduluses are Gtop = 0.003 kN/m2 and Gbottom = 401.3 kN/m2 (see Eq. 3.1). The
height of the strata was H = 4 m, therefore α = 100.

Based on tha analytical formula the settlement  uz  = 50 m.  The difference (error) between the
finite element calculation and the analytical solution is less than 5%. This difference comes from
the incompressibility of the analytical model and the considered real infinite half-space.

Fig. 5.21 and 5.22 shows the vertical stress ditribution and the intensity and the directions of
principle stresses under the ditributed load from the FEM-Design calculation. 
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Figure 5.21 – Vertical stress distribution [MPa]

Figure 5.22 – Distribution of the intensity of the principle stresses and directions under the foundation



FEM-Design 15 

5.1.3 Infinitely flexible circular foundation on linear elastic soil

In this case the problem is a half-space with constant Young's modulus (the self-weight γ
was zero, the material model was linear elastic, isotropic with E = 95800 kN/m2)  and a flexible
circular foundation on it with  R = 23.35 m radius. The dimension of the applied soil layer is
depends on this radius. The limit depth is 5R ≈ 118 m and the width is 10R ≈ 240 m (see Fig.
5.23).  The load is a distributed surface load on a circular foundation which has zero stiffness.
The intensity of the applied load is qz  = 263.3 kN/m2. The Poisson' ratio is varying. In the first
case  ν = 0.49 and in the second case  ν = 0.0.  All of the vertical planes around the soil strata
were fixed horizontally, the botton plane horizontally and vertically (see Fig. 5.23). 

The finite element  mesh and the distributed surface load is  shown in Fig.  5.24.  During the
validation fine element group (quadratic element group) was used. The average element size
was 7 m (see Fig. 5.24 about the applied 3D mesh).
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Figure 5.23 – The geometry of the problem (red arrows mean qz=263.3 kN/m2 vertical distributed load)
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The scaled displacements are shown in Fig. 5.25 and 5.26. The calculated settlements at the
center of the circle was uz = 77.1 mm in the first case and uz = 112 mm in the second case (see
Fig. 5.25 and 5.26).
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Figure 5.24 – The finite element mesh and the applied distributed load on the circular foundation

Figure 5.25 – The displacements with the deformed mesh [mm] (150 times scaled up, ν=0.49)
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Fig. 5.27 shows the vertical stress ditribution under the circle from the FEM-Design numerical
calculation in the first case (ν = 0.49).

According to [56], [59] and [60] the theoretical solution of the settlement at the center of the
circle is given with Eq. 5.13.
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Figure 5.26 – The displacements with the deformed mesh [mm] (150 times scaled up, ν=0.0)

Figure 5.27 – Vertical stress distribution [MPa]
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qz R I p

E
=uz (Eq. 5.13)

where qz is the applied distributed load, R  is the radius of the circle, E is the Young's modulus.
Ip is the influence coefficient, which in this case if  ν = 0.49 equal to approximately 1.2 and if
ν = 0.0 equal to approximately 1.65. According to the input values this settlement is:

uz=
263.3⋅23.35⋅1.2

95800
=0.077 m=77 mm (Eq. 5.14)

uz=
263.3⋅23.35⋅1.65

95800
=0.106m=106mm (Eq. 5.15)

The difference (error) between the FEM-Design calculation and the analytical solution is less
than 6 % in both case. 
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5.2 Verification and validation of Mohr-Coulomb material model

5.2.1 Pure stress states on a cuboid

The material model input parameters for the pure stress statas are as follows: E = 1000
kN/m2, φ = 20o, c = 10 kPa, ν = 0.3. The self-weight of the soil element was set to γ = 0. The
geometry of the analyzed cuboid and boundary conditions are the same than in Chapter 5.1.1
(see Fig. 5.28).

In all case in this chapter, based on the ratio between the applied normal stresses the perfectly
plastic condition is arised in every integration points. In this pharagraph both the fine (quadratic)
and standard (linear) finite element groups are involved. According to this fact based on Chapter
2.2 the amount of integration points are different by a hexahedron element. Based on FEM-
Design calculations the integration points are shown is Fig 5.29 with the red dots by fine and
standard elements. These points is available after the FEM-Design calculation by the results of
non-linear  soil  calculation  results  window  (for  further  information  please  check  „The  new
features guide” for this version).
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Figure 5.28 – 2x2x2 m cuboid

. 

Figure 5.29 – The integration points in the analyzed element (fine and standard) 
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5.2.1.1 Uniaxial compression

Fig. 5.30 shows the uniaxial compression problem.

The theoretical load-bearing capacity for this uniaxial compression problem comes from Eq.
3.18. (see below the repeated Eq. 3.18 once again). Based on the input parameters and boundary
conditions, in this case:  σ1' = σ2' = 0 , σ3' ≠ 0.

0=(σ 1 '−σ 3 ')+(σ 1 '+σ 3 ')sinφ−2ccosφ (Eq. 3.18)

With the substitutions of these parameters into Eq. 3.18 the following equation is revealed:

σ 3 '=−2c
cosφ

1−sinφ
=−2⋅10

cos 20o

1−sin 20o =−28.56
kN
m2 (Eq. 5.16)

Fig. 5.31 shows the load-displacement diagram of the cuboid in this case for fine and standard
element types also. The load-bearing capacity from the numerical calculation based on Fig. 5.31
is  σ3' = –28.9 kN/m2. There is no significante difference between fine and standard calculation
in this case but this is only true by pure stress states.

When the increased distributed load reaches this σ3' = –28.9 kN/m2 value the displacements are
increasing radically and basically at the end of the calculation infinite displacements occures.

The differences (error) between the FEM-Design calculations and the theoretical solution are
less than 1.2 %.
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Figure 5.30 – Uniaxial compression [σ3] and applied boundary conditions
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Figure 5.31 – Stress-displacement diagram
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5.2.1.3 Biaxial compression

Fig. 5.32 shows the biiaxial compression problem.

Based on the input parameters and boundary conditions, in this case:  σ3'/σ1'  =  3 and σ2'  =
ν(σ1'+σ3') = 0.3 (σ3'/3 + σ3') = 0.4 σ3'. Thus in this load case the principle stresses in the function
of  σ3'  are as  follows:   σ1'  =  0.3333σ3',  σ2'  =  0.4σ3'  and  σ3'. With  the  substitutions  of  these
parameters  into  Eq.  3.18  and  using  the  material  parameters  also  the  following  equation  is
revealed:

σ 3 '=−2c
cosφ

(1−sinφ )
+σ 1 '

(1+sinφ )

(1−sinφ )
=−2c

cosφ
(1−sinφ )

+0.3333σ 3 '
(1+sinφ )

(1−sinφ )
(Eq. 5.17)

σ 3 '=−2c
cosφ

(1−sinφ −0.3333−0.3333sinφ )
=−2⋅10

cos 20o

(0.6667−1.3333sin 20o
)
=−89.2

kN
m 2

  (Eq. 5.18)

Fig. 5.33 shows the load-displacement diagram of the cuboid in this case for fine and standard
element types also. The load-bearing capacity from the FEM-Design calculation based on Fig.
5.33  is  σ3

'=  –89.6 kN/m2.  There  is  no  significante  difference  between  fine  and  standard
calculation in this pure stress case.

When the increased distributed load reaches this σ3
'= –89.6 kN/m2 value, the displacements are

increasing radically and basically at the end of the calculation infinite displacements occured.

The differences (error) between the FEM-Design calculations and the theoretical solution are
less than 0.5 %.
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Figure 5.32 – Biaxial loading [σ3'/σ1' = 3] and applied boundary conditions
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Figure 5.33 – Stress-displacement diagram
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5.2.1.4 Triaxial compression

Fig. 5.34 shows the triiaxial compression problem.

Based on the input parameters and boundary conditions, in this case:  σ3'/σ2' = 2 and σ2'/σ1' =
2.5. Thus in this load case the principle stresses in the function of  σ3'  are as follows:  σ1' =
0.2σ3', σ2' = 0.5σ3' and σ3'. With the substitutions of these parameters into Eq. 3.18 and using the
material parameters also the following equation is revealed:

σ 3 '=−2c
cosφ

(1−sinφ )
+σ 1 '

(1+sinφ )

(1−sinφ )
=−2c

cosφ
(1−sinφ )

+0.2σ 3 '
(1+sinφ )

(1−sinφ )
 (Eq. 5.19)

σ 3 '=−2c
cosφ

(1−sinφ −0.2−0.2sinφ )
=−2⋅10

cos 20o

(0.8−1.2 sin 20o
)
=−48.2

kN
m 2 (Eq. 5.20)

Fig. 5.35 shows the load-displacement diagram of the cuboid in this case for fine and standard
element types also. The load-bearing capacity from the FEM-Design calculation based on Fig.
5.35  is  σ3

'  =  –49.2 kN/m2.  There  is  no  significante  difference  between  fine  and  standard
calculation in this pure stress case.

When the increased distributed load reaches this σ3
' = –49.2 kN/m2 value, the displacements are

increasing radically and basically at the end of the calculation infinite displacements occured.

The differences (error) between the FEM-Design calculations and the theoretical solution are
less than 2 %.
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Figure 5.34 – Triaxial loading [σ3'/σ2' = 2 and σ2'/σ1' = 2.5] and applied boundary conditions
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Figure 5.35 – Stress-displacement diagram
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5.2.2 Load-bearing capacity of a shallow wall foundation

In real life it is a frequented occurrence when the cohesion of a clay layer increasing with
depth. It is also known that the Young's modulus can increase with depth (see Chapter 5.1.2). In
this  chapter  the  theoretical  load-bearing  capacity  will  be  calculated  according  to  the  linear
elastic perfectly plastic Mohr-Coulomb material model for a cohesive soil.

A strip  foundation  will  be  analyzed  in  3D.  Due  to  the  symmetry  during  the  model
calculation only the half  of  the strata  and the foundation will  be built.  Fig 5.36 shows the
applied boundary conditions. At the top of the soil a 1 m width footing is defined (the footing
was rigid with E = 31000 GPa elastic stiffness). According to the symmery it means a B = 2 m
width foundation. The depth of the soil layer is H = 2 m and the width of the half model space is
4B/2  =  4 m. Considering the  the symmetry condition at the left edge of the foundation the
rotation around it was restricted and the horizontal displacement also perpendicular to this edge
(see Fig 5.36). All of the vertical planes around the soil strata were fixed horizontally, the botton
plane vertically.  The material model was the Mohr-Coulomb plasticity. The ditribution of the
Young's modulus and the cohesion is shown in Fig 5.37. The frictional angle is set to zero (φ =
0) and the Poisson's ratio was ν = 0.49. To calculate the load-bearing capacity a ditributed load
qz  = 15 kN/m2  was applied on the top of the foundation (see Fig. 5.36 and 5.38). The vertical
displacements in the center point of the footing were saved in every load step. 
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Figure 5.36 – The geometry of the problem (red arrows mean qz vertical distributed load)
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The finite element  mesh and the distributed surface load is  shown in Fig.  5.38.  During the
validation fine element group (quadratic element group) was used. The average element size
was 0.05 m (see Fig. 5.38 about the applied 3D mesh).

Two different cases were analyzed. In the first case simulate a rough foundation because the
connection was set to rigid in all direction between the footing and the soil. In the second case
the connection between the footing and the soil was rigid only in the vertical direction, thus
there can be a slip between them. This case simulate a perfectly smooth foundation.  

The scaled displacements are shown in Fig. 5.39 and Fig. 5.40. The calculated settlement at the
center of the circle was uz  = 1193 mm in the first case (see Fig. 5.39) and uz = 2015 mm in the
second case (see Fig. 5.40). These values are large displacements considering that the half-width
of the footing was B/2 = 1 m.
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Figure 5.37 – The linearly varying cohesion and Young's modulus with depth
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Figure 5.38 – The finite element mesh and the applied distributed load on the strip foundation
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Based on the finite element calculations the load-bearing capacity for rough foundation
is  qz.max  = 10.3 kN/m2 and for the smooth foundation  qz.max  = 8.8 kN/m2  respectively (see Fig.
5.41). We can say that these two distributed loads are the load-bearing capacities because after
these loads  we get  very large displacement  in  the center  of  the foundation and next  to  the
foundation  plastic  regions  arised  (see  Fig.  5.39  and  5.40).  Based on the  load-displacement
diagrams (Fig. 5.41) these two load-bearing capacities are reasonable from the FEM-Design
calculations.
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Figure 5.39 – The displacements with the deformed mesh [mm] (rough case, 0.03 times scaled down)

Figure 5.40 – The displacements with the deformed mesh [mm] (smooth case, 0.03 times scaled down)
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In the analyzed cases the load bearing capacities based on [56], [61] and [62] are given with Eq.
5.21.

qz.max=
F
B

=β [(2+π )c top+
B d c

4 ] (Eq. 5.21)

where qz.max is the load-bearing capacity in kN/m2,  ctop is the cohesion at the top of the ground
level B is the width of the wall foundation and dc is the increment of the cohesion with depth. β
is a factor depends on the foundation roughness. In this case β equals to 1.27 and 1.48 for rough
and smooth foundation. Based on the input data and Eq. 5.21 the load-bearing capacities for
rough  and  smooth  cases  are  qz.max  =  9.1  kN/m2 and   qz.max  =  7.8  kN/m2 respectively.  The
differences (error) between the FEM-Design calculations and the analytical solutions are less
than 12 %.
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Figure 5.41 – Load-vertical displacement diagram of the two different cases
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Figure 5.42 – The integration points in plastic condition at failure (rough case)
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5.2.3 Load-bearing capacity of a circular isolated foundation

The material parameters:  E =  2400 kPa,  ν  = 0.33,  φ  = 30o and  c  = 1.6 kPa. The self-
weight of the soil was  γ  = 16 kN/m3. A circular foundation was analyzed in 3D. Due to the
symmetry during the model calculation only the quarter of the strata and the foundation was
built. Fig 5.43 shows the applied boundary conditions. At the top of the soil a quarter circle was
defined with R = 1 m radius (the footing was rigid with E = 31000 GPa elastic stiffness). The
depth of the soil layer is H = 4 m and the width of the half model space is 10R/2 = 5 m. At the
symmetry conditions  the  rotation  of  the  foundation around its  edges  was restricted and the
horizontal  displacement also perpendicular to these edges (see Fig 5.43).  All  of the vertical
planes around the soil strata were fixed horizontally, the botton plane vertically. The material
model was the Mohr-Coulomb plasticity. To calculate the load-bearing capacity a ditributed load
qz  = 500 kN/m2  was applied on the top of the foundation (see Fig. 5.43 and 5.44). The vertical
displacements in the center point of the footing were saved in every load step. 

The finite element  mesh and the distributed surface load is  shown in Fig.  5.44.  During the
validation fine element group (quadratic element group) was used. The average element size
was 0.45 m with a local refinement around the footing (see Fig. 5.44 about the applied 3D
mesh).
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Figure 5.43 – The geometry of the problem (red arrows mean qz vertical distributed load)
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The scaled displacements are shown in Fig. 5.45 at the end of the calculation. The calculated
settlement at the center of the circle was  uz  =  21606 mm. This value is a large displacement
therefore it means that the footing reached its load-bearing capacity before the maximum load
level what was applied.  Based on the finite element calculations the load-bearing capacity for
rough foundation is  qz.max = 375 kN/m2 , see the saved load-displacement curve in Fig. 5.46. We
can say that this distributed load is the load-bearing capacity because after this load-step we get
very large displacement in the center of the foundation and next to the foundation plastic regions
arised (see Fig. 5.46). Based on the load-displacement diagrams (Fig. 5.46) this load-bearing
capacity is reasonable from the FEM-Design calculation.
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Figure 5.44 – The finite element mesh and the applied distributed load on the circular foundation

Figure 5.45 – The displacements with the deformed mesh [mm] (0.0016 times scaled down)
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There  is  analytical  solution  for  this  problem based  on  Terzaghi's  theory.  The  load-bearing
capacity of the circular footing is as follows according to Terzaghi:

The load-bearing factors:

N q=eπ tan (φ) tan2(45o
+

φ

2 )=eπ tan (30o
) tan 2(45o

+
30o

2 )=18.40 (Eq. 5.22)

N c=
N q−1

tan φ
=

18.40−1
tan 30o =30.14 (Eq. 5.23)

N γ=(N q+1) tanφ=(18.40+1) tan 30o
=11.20 (Eq. 5.24)

The shape correction factors:

sq=1+
B
L

sinφ=1+
2
2

sin 30o
=1.5 (Eq. 5.25)

sc=
sq N q−1

N q−1
=

1.5⋅18.40−1
18.40−1

=1.847 (Eq. 5.26)

sγ =1−0.3
B
L

=1−0.3
2
2
=0.7 (Eq. 5.27)

Based on these data the load-bearing capacity:

σ f =t γ N q sq+c N c sc+γ B N γ sγ (Eq. 5.28)
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Figure 5.46 – Load-vertical displacement diagram of the footing
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σ f =0⋅16⋅18.40⋅1.5+1.6⋅30.14⋅1.847+16⋅2⋅11.20⋅0.7=339.9
kN

m 2
(Eq. 5.29)

Based on the finite element calculations the load-bearing capacity for the circular foundation is
qz.max  = 375  kN/m2  (see  Fig.  5.46).  The  differences  (errors)  between  the  FEM-Design
calculations and the analytical solution is less than 11 %. For further information on this subject
see [63]
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5.3 Verification of Scandinavian soft clay model

For the verification of the Scandinavian soft clay material model (see Chapter 3.3) a
simple soil strata was analyzed. See Fig 5.47 for the detailed geometry. The self-weight of the
soil was neglected (γ = 0) and a total distributed surface load was applied on the top of the soil
(see Fig. 5.47). The material model for the soil layer was over-consolidated (see Fig. 5.48). The
Mohr-Coulomb failure criteria was neglected see Chapter 4.4, thus the effective frictional angle
and the effective cohesion do not have any effects on the displacements. The input parameters
based on Fig. 5.48 are as follows:  M0  = 30000 kN/m2,  ML  = 1000 kN/m2,  M'  = 20,  pC  = 50
kN/m2, pL = 100  kN/m2, ν = 0.3 and the applied surface load was qz = 300 kN/m2.
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Figure 5.48 – The applied material model parameters for over-consolidated soil

Figure 5.47 – The geometry of the problem and the boundary conditions (supports and qz vertical surface load)
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Based on Chapter 3.3 until the stress state reach the mean effective preconsolidation pressure
(pC

') the behaviour is linear elastic. (Be careful, the self-weight of the soil was neglected in this
example.) According to the linear elastic theory (Chapter 3.1) the vertical stresses for a half-
space are: 

K0=
ν

1−ν
=

0.3
1−0.3

=0.4286 (Eq. 5.30)

σ x '=σ y '=K 0σ z '=0.4286σ z ' (Eq. 5.31)

pC '=
σ x '+σ y '+σ z '

3
=

K 0σ z '+K0σ z '+σ z '

3
=

0.4286σ z '+0.4286σ z '+σ z '

3
=0.6191σ z '

(Eq. 5.32)

Based on Eq. 5.32 the pressure load (surface load) on the top of the soil can be calculeted which
causes the mean effective pre-consolidation pressure:

σ z1 '=
pC '

0.6191
=

50
0.6191

=80.76
kN
m2 (compression) (Eq. 5.33)

Therefore  the  vertical  displacement  when  the  external  load  causes  the  mean  effective
preconsolidation pressure:

uz 1=∫
z

0 Δσ z1 '

M 0

dz=
−(80.78−0)⋅10

30000
=−0.02693 m (Eq. 5.34)

Under further load increment the oedometer modulus depends on the stress state (see Chapter
3.3) thus until we reach the pL' mean effective stress value the compression modulus equal to ML

(see Fig. 5.48). Therefore the load value (pressure) when the mean effective stress reaches pL'
value is:

σ z2 '=
pL '

0.6191
=

100
0.6191

=161.5
kN
m2 (compression) (Eq. 5.35)

Therefore the vertical displacement when the external load causes this mean effective stress:

uz 2=uz1+∫
z

0 Δσ z2 '

M L

dz=−0.02693+
−(161.6−80.78)⋅10

1000
=−0.8351 m (Eq. 5.36)
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After this stress state the stress dependency is different (see Fig. 5.48). The connection between
the mean effective stresses and compression modulus is linear in this case. Thus after pL' mean
effective stress the vertical-stress - vertical-strain relationship in this case is the following:

 

d ε z=
1

M L−0.6191 M 'σ z '
d σ z ' (Eq. 5.37)

ε z=∫
Δσ z'

1
M L−0.6191 M 'σ z '

d σ z ' (Eq. 5.38)

In this  case the stress increment is equal to the difference between the value of the applied
surface load (qz  = 300 kN/m2) and surface pressure which belongs to  pL'  (see Eq. 5.35). Thus
this  Δσz3' = 300 – 161.5 = 138.5 kN/m2 (compression). 

From the stress increment the vertical strain can be calcaulted (see Eq. 5.38).  To calculate the
additional vertical displacements the following determinated integral must be calculated:

Δ uz3=∫
z

0

ε z dz=∫
z

0

∫
Δσz '

1
M L−0.6191M 'σ z '

d σ z ' dz (Eq. 5.39)

Therefore the vertical displacement when the external load reaches qz = 300 kN/m2:

uz 3=u z2+∫
z

0
Δσ z3 '

M (σ z ')
dz=uz 2+∫

z

0

∫
0

Δσ z3 '
1

M L−0.6191M 'σ z '
d σ z ' dz= (Eq. 5.40)

=−0.8351+ ∫
−10 m

0

∫
0

−138.5
1

1000−0.6191⋅20σ z '
d σ z ' dz=−0.8351+ ∫

−10 m

0

(−0.08063)dz=

=−0.8351+(−0.08063)[(0)−(−10)]=−0.8351−0.8063=−1.6414 m

Fig. 5.49 shows the vertical load – vertical displacement diagram of the calculation with FEM-
Design and the relevant values at different load values.
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The  differences  (error)  between  the  FEM-Design  calculations  and  the  theoretical  analytical
solutions are less than 0.7 % (see Fig. 5.49 and Eq. 5.40).
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Figure 5.49 – Load-displacement curve with the significant values
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5.4 Verification of the effect of water pressure and effective stresses

The following example will give information about the effect of water pressure and the
calculation of effective stresses. In this case only the self-weight of the strata will be active.
Thus the relevant load-combinations will contain the same load-case, namely the „soil dead
load”. But in the three different analyzed combinations the corresponding ground water levels
(GWL)  will  be  different.  In  the  next  figure  one  can  see  the  input  geometry and the  three
different GWL-s (Fig. 5.50).

The limit depth was z = – 10 m, GWL1 was on  z = – 10 m,  GWL2 was on  z = – 5 m and
GWL3 was on  z = 0 m. The compression modulus was M0  = Eoed  = 10000 kPa, the Poisson's
ratio was ν = 0.3, thus the φ = 34.860. The dry self-weight of the soil was γdry  = 18 kN/m3, the
saturated self-weight of the soil was  γsat  = 20 kN/m3. The self-weight of the water is  γw  = 10
kN/m3.

Let's see the analytical exact solution for the stress distribution and the defomartion for this half-
space problem.  The coefficient of earth pressure at rest in this case (see the first footnote in
Chapter 3.2.2):

K0=1−sin φ= ν
1−ν

=1−sin (34.85o
)=

0.3
1−0.3

=0.4286 (Eq. 5.41)

The effective vertical stresses by the three different ground water levels (GWL) at different
heights are the following respectively. The effective vertical stress at the top is equal to zero in
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Figure 5.50 – The geometry and the three different ground water levels (GWL)
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the three cases:

σ z1 '( z=0)=σ z2 '(z=0)=σ z3 '( z=0)=0 (Eq. 5.42)

The effective vertical stresses at  z  = – 5 m are as follows by the three different ground water
levels:

σ z1 '( z=−5m)=γ dry(−5m)=18⋅(−5)=−90
kN

m 2
(Eq. 5.43)

σ z2 '(z=−5m)=γ dry(−5m)=−90
kN

m2
(Eq. 5.44)

σ z3 '(z=−5m)=(γ sat−γ w)(−5m)=10⋅(−10)=−50
kN

m 2
(Eq. 5.45)

The effective vertical stresses at z = – 10 m are as follows by the three different ground water
levels:

σ z1 '( z=−10m)=γ dry(−10 m)=18⋅(−10)=−180
kN

m 2
(Eq. 5.46)

σ z2 '(z=−10m)=γ dry(−5m)+(γ sat−γ w)(−5m)=18⋅(−5)+10⋅(−5)=−140
kN

m2
(Eq. 5.47)

σ z3 '(z=−10m)=(γ sat−γ w)(−10m)=10⋅(−10)=−100
kN

m2
(Eq. 5.48)

The finite element calculation gives very close values to the exact solution for the effective
vertical stresses (see Fig. 5.51).
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The effective horizontal stresses by the three different ground water levels (GWL) at different
heights. The effective horizontal stresses at z = 0 m are equal to zero:

σ x1 '(z=0)=σ x2 '( z=0)=σ x3 '( z=0)=0 (Eq. 5.49)

The effective horizontal stresses at z = – 5 m are as follows by the three different ground water
levels:

σ x1 '(z=−5m)=K 0σ z1 '(z=−5m)=0.4286⋅(−90)=−38.57
kN

m 2
(Eq. 5.50)

σ x2 '( z=−5m)=K 0σ z2 '(z=−5m)=0.4286⋅(−90)=−38.57
kN

m2
(Eq. 5.51)

σ x3 '(z=−5m)=K 0σ z3 '(z=−5m)=0.4286⋅(−50)=−21.43
kN

m 2
(Eq. 5.52)

The effective horizontal stresses at z = – 10 m are as follows by the three different ground water
levels:

σ x1 '(z=−10m)=K0 σ z1 '( z=−10m)=0.4286⋅(−180)=−77.14
kN

m2
(Eq. 5.53)

σ x2 '( z=−10m)=K 0σ z2 '(z=−10m)=0.4286⋅(−140)=−60.00
kN

m2
(Eq. 5.54)

σ x3 '(z=−10m)=K0 σ z3 '( z=−10m)=0.4286⋅(−100)=−42.86
kN

m2
(Eq. 5.55)
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     GWL1            GWL2    GWL3

Figure 5.51 – The effective vertical stresses by the different ground water levels [MPa] 
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The finite element calculation gives very close values to the exact solution for the effective
horizontal stresses (see Fig. 5.52).

The pressure on sidewalls (reactions at surface support) is equal to the total stresses in the soil.
The total  horizontal  pressure  comes from the  effective  horizontal  earth  pressure  plus  water
pressure.  The total horizontal pressure values by the different ground water levels at different
heights:

The total horizontal stresses at z = 0 m are equal to zero.

σ x1( z=0)=σ x2(z=0 )=σ x3(z=0)=0 (Eq. 5.56)

The total horizontal stresses at  z  = – 5 m are as follows by the three different ground water
levels:

σ x1( z=−5 m)=σ x1 '(z=−5m)+γ w (0m)=−38.57+0=−38.57
kN

m2
(Eq. 5.57)

σ x2( z=−5m)=σ x2 '(z=−5m)+γ w(0m)=−38.57+0=−38.57
kN

m2
(Eq. 5.58)

σ x3( z=−5 m)=σ x3 '( z=−5m)+γ w (−5m)=−21.43+(−50)=−71.43
kN

m2
(Eq. 5.59)

The total horizontal stresses at  z  = – 10 m are as follows by the three different ground water
levels:
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  GWL1     GWL2         GWL3

Figure 5.52 – The effective horizontal stresses by the different ground water levels [MPa] 
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σ x1( z=−10 m)=σ x1 '(z=−10m)+γ w(0m)=−77.14+0=−77.14
kN

m2
(Eq. 5.60)

σ x2( z=−10 m)=σ x2 '( z=−10m)+γ w (−5m )=−60.0+(−50)=−110.0
kN

m2
(Eq. 5.61)

σ x3( z=−10 m)=σ x3 '(z=−10m)+γ w(−10m)=−42.86+(−100)=−142.9
kN

m2
(Eq. 5.62)

The total vertical stresses at z = – 10 m are as follows by the three different ground water levels:

σ z1(z=−10 m)=σ z1 '(z=−10m)+γ w (0m )=−180+0=−180
kN

m2
(Eq. 5.63)

σ z2(z=−10 m )=σ z2 '( z=−10m)+γ w(−5m)=−140+(−50)=−190.0
kN

m2
(Eq. 5.64)

σ z3(z=−10 m)=σ z3 '(z=−10m)+γ w (−10m)=−100+(−100)=−200
kN

m 2
(Eq. 5.65)

The  finite  element  calculation  gives  very  close  values  to  the  exact  solution  for  the  total
horizontal and vertical pressures (see Fig. 5.53).

The settlements caused by the self-weight of the soil comes from the effective stresses. The
vertical settlements are as follows at the top of the soil by the three different GWL-s.

uz max1=∫
z

0 σ z '

M 0

dz=∫
z

0 γ dry z

M 0

dz=
γ dry

M 0
[ z 2

2 ]
−10

0

=
18

10000 [ 02

2
−

(−10)
2

2 ]=−0.090 m (Eq. 5.66)
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Figure 5.53 – The total horizontal pressures (surface reactions) by the different ground water levels [kPa] 
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uz max2=∫
z

0 σ z '
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2
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(Eq. 5.68)

The finite  element  calculation gives  very close values  to  the exact  solution for  the vertical
settlements also (see Fig. 5.54).

84

         Undeformed            GWL1        GWL2     GWL3

Figure 5.54 – The undeformed sideview and the vertical settlements by the different ground water levels [mm]
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5.5 Verification of the effect of lateral pressures on basement walls

The limit depth was z = – 10 m, GWL1 was on  z = – 10 m,  GWL2 was on  z = – 7.5 m ,
GWL3 was on  z = – 2.5 m and GWL 4 was on  z = 0.0 m. The compression modulus was M0 =
Eoed  = 10000 kPa, the Poisson's ratio was ν = 0.3. The dry self-weight of the soil was γdry  = 18
kN/m3, the saturated self-weight of the soil was γsat  = 20 kN/m3. The self-weight of the water is
γw=10 kN/m3. In the middle of the modelled soil space a foundation slab (thickness equal to 1.0
m) was created but the level of the slab was under the top of the ground level (z = – 5 m, see
Fig. 5.55 and 5.56). There are four vertical basement walls (thickness equal to 20 cm) at the
edge of the foudation slab and at different levels there are three plates (thickness equal to 20 cm)
between the walls, see also the figures about the geometry. All of these mentioned planar parts
were modelled with γRC = 25 kN/m3 and C25/30 concrete material. 

In FEM-Design the friction between the basement walls and the soil is neglected. Based
on this approximation with a hand calculation we will show the analytical results of the earth
pressure and water pressure which have affect on the basement walls and the finite element
calculation with FEM-Design according to the different ground water levels.

In this example the average element size was 1.0 m and fine (quadratic) element group
was applied during the finite element calculations (see Fig. 5.57).

The considered load-combination contains the dead load of the soil with the indicated
self-weights and the self-weight of the mentioned structure (see Fig. 5.55 and 5.56). The load-
combination calculation was considered with non-linear soil calculation without uplift (see the
„New features guide” for more details).
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Figure 5.55 – The geometry and the four different ground water levels (GWL)
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By the hand calculation of the horizontal pressure on the basement walls the rest earth
pressure was assumed because the rigidity of the modelled building is quite great. Thus the
coefficient of earth pressure at rest (see the first footnote in Chapter 3.2.2):

K0=1−sin φ= ν
1−ν

=
0.3

1−0.3
=0.4286 (Eq. 5.69)

Fig. 5.58 shows the results of the hand calculation without details for GWL 1 and GWL 2. The
first diagram shows the total vertical stress (σV) next to the basement walls considering the water
level and the dry and saturated self-weight of the soil. The second shows the water pressure
considering the level of the water in the soil (σW in case of GWL 1 and GWL 2 are zero because
the level of the water is lower than the level of the foundation slab, see Fig. 5.56). The third
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Figure 5.56 – The geometry and the four different ground water levels (GWL) in section view

Figure 5.57 – The finite element mesh (average element size: 1.0 m)
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diagram is the effective vertical stress (σ'V) which is the difference between the total vertical
stress and water pressure (see Chapter 1.3). The fourth one shows the effective horizontal stress
(σ'H) based on K0 and σ'V. The fifth diagram is the total horizontal stress (σH) which comes from
the effective horizontal stress plus the water pressure. The last result on Fig. 5.58 shows the
position and the amount of the resultant force from total horizontal stress.

With the same theory and calculation method Fig. 5.59 shows the analytical results for GWL 3. 
The notation and the order of the diagram is equivalent with the former one.

With the same theory and calculation method Fig. 5.60 shows the analytical results for GWL 4 
when the water level is at the top of the soil layer. The notation and the order of the diagram is 
equivalent with the former ones.
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Figure 5.58 – The hand calculation of the horizontal wall pressures and resultant in case of GWL 1 and GWL 2
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Figure 5.59 – The hand calculation of the horizontal wall pressures and resultant in case of GWL 3
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Next figures (Fig. 5.61 and 5.62) show the results of the FEM-Design calculation. The results of
the connection forces next to the basement walls give the total horizontal pressures which comes
from the effective earth pressure plus the adequate water pressure.
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Figure 5.61 – The total horizontal pressures (connection forces) on the walls in [kPa]
GWL 1 left side, GWL 2 right side

Figure 5.60 – The hand calculation of the horizontal wall pressures and resultant in case of GWL 4
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Table 3 shows a comparison between the mentioned hand calculation  and the FEM-Design
calculation for the different ground water levels. The differences (error [%]) also included. The
maximum difference is 14.13 %. The finite element results are in good agreement with the hand
calculation. Do not forget that the stresses and pressures are the slave (secondary) variables of
the FE technique, thus the results could be better if the finite element mesh will finer (more
dense), see also Chapter 1.

During a non-linear soil caculation the material model represent the connection between strains
and effective stresses (see Chapter 1.3). Therefore check the stress results in the soil layer after
the calculation respect to the ground water levels. In the new geo module FEM-Design calcultes
the displacements and strains with the effective stresses and at the results the solid stresses are
always effective stresses. 

In this example beyond the soil dead load the structural self-weight was considered. The sum of
the dead load of the structures with the indicated geometry and materials is  R = 1520 kN. It
means that the average total vertical stress under the very stiff foundation slab must be: 
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Figure 5.62 – The total horizontal pressures (connection forces) on the walls in [kPa]
GWL 3 left side, GWL 4 right side

Table 3 – The comparison of the hand and finite element calculation to the pressures on the basement walls

Comparison
GWL 1 and GWL 2 GWL 3 GWL 4

FEM-Design Error [%] FEM-Design Error [%] FEM-Design Error [%]

1.555 1.555 – 34.68 2.912

– 33.42 13.35 – 55.00 – 48.01 12.71 – 71.43 – 66.71 6.608

Resultant force [kN] 385.7 363.6 5.730 467.9 435.5 6.925 714.3 669.2 6.314

321.4 276.0 14.13 458.4 401.6 12.39 595.2 539.9 9.291

0.8333 0.7591 8.904 0.9796 0.9222 5.860 0.8333 0.8068 3.180

Hand 
calculation

Hand 
calculation

Hand 
calculation

Wall pressure at      
z = – 2.5 m [kPa] – 19.29 – 18.99 – 19.29 – 18.99 – 35.72

Wall pressure at      
z = – 5.0 m [kPa]

– 38.57

Moment about         
z = – 2.5 m [kNm]
Position of the 
resultant [m]    
below z = – 2.5 m
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σ A=−
R
A
=

1520kN

16m 2
=−95

kN

m2
(Eq. 5.70)

The reactions under the foundation slab almost equal to this average value in all case (by the
four GWL-s), see Fig. 5.61 and 5.62. But this value contains the effect of the water level if the
ground water level is above the foundation slab. It means that the effective stresses in the soil
under the foundation slab depends on the considered ground water levels. 

Fig. 5.63 shows the vertical effective stresses in the soil in case of GWL 1 and GWL 2. It is
obvious that the effective vertical stresses are the same above the two ground water level but at
the limit depth they are different because the GWL-s were not the same. In both case the GWL-s
were below the foundation slab therefore the stresses under the slab almost equal to the average
hand calculated stress (see Eq. 5.70). Fig. 5.63 shows that this effective vertical stress value
equal to – 91.3 kPa. The difference comes from tha mentioned fact that the stresses are the slave
variables of FE technique but the difference less than 4 %. 

Fig. 5.64 shows the vertical effective stresses in the soil in case of GWL 3 and GWL 4. In both
case the GWL-s were above the foundation slab therefore the stresses in the soil under the slab
not equal to the average total vertical stress (see Eq. 5.70) because the effective stress in the soil
depends on the water level. Fig. 5.64 shows the effective vertical stress values. 

From the total stress value (Eq. 5.70) the lift force from the water (water pressure) must be
substracted. In case of GWL 3 the water pressure is – 25 kPa (see Fig 5.59). Thus the average
effective vertical stress under the slab must be – 95 – ( –25) = – 70 kPa. In case of GWL 4 the
water pressure is – 50 kPa (see Fig 5.60). Thus the average effective vertical stress under the
slab must be – 95 – ( –50) = – 45 kPa. 

Fig. 5.64 shows the effective vertical stress in case of GWL 3 and GWL 4. Under the foundation
slab these stress values are – 68.6 kPa and – 42.0 kPa based on the FE calculation in case of
GWL 3  and  GWL 4  respectively.  The  differences  between  the  analytical  results  and  finite
element results are less than 7%. 
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Figure 5.63 – The effective vertical stresses in [MPa]
GWL 1 left side, GWL 2 right side
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According  to  the  elasticity  theory  there  is  a  unequivocal  connection  between  the  effective
vertical  and  effective  horizontal  stresses.  Therefore  Fig.  5.65  and  5.66  show  the  effective
vertical stresses in a section view of the modell. The comparison between these results and Fig
5.58-5.60 effective horizontal stress results by different GWL cases give quite close agreement.
See also Table 4.
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Figure 5.64 – The effective vertical stresses in [MPa]
GWL 3 left side, GWL 4 right side

Figure 5.65 – The effective horizontal stresses in [MPa]
GWL 1 left side, GWL 2 right side
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All of the mentioned results depends on the stiffnesses of the structure and the amount of the
applied loads. Now we get quite good agreements with the hand calculation (coefficient of earth
pressure at rest Eq. 5.69) because the structure in the soil was quite rigid compared to the soil
layer. According to the earth pressure theory (Chapter 3.2.2) the horizontal pressures depend on
the movement of the structure towards or backwards to the soil which depend on the stiffnesses
of the soil-structure interaction.

Fig. 5.67 shows the bending moment diagram of the basement walls and the foundation slab in a
section which are in the soil in case of GWL 1 and GWL 4. The wall and the slab are surface
elements  thus  the mentioned bending moments  are  those bending moments  which  have the
bending moment vectors are perpendicular to the section (see Fig. 5.67). The total horizontal
pressure on the basement  walls  are  larger  in  case of  GWL 4 than in  GWL 1 therefore the
bending moments in the walls are larger too in case of GWL 4 than GWL 1. This effect causes
an opposite behaviour respect to the moments in the foundation slab.
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Figure 5.66 – The effective horizontal stresses in [MPa]
GWL 3 left side, GWL 4 right side

Table 4 – The comparison of the hand and finite element calculation to the effective horizontal stresses

Comparison
GWL 1 and GWL 2 GWL 3 GWL 4

FEM-Design Error [% ] FEM-Design Error [% ] FEM-Design Error [% ]

0.3110 0.1037 – 10.34 3.545

– 39.16 1.530 – 30.00 – 32.55 8.500 – 21.43 – 20.58 3.966

Hand 
calculation

Hand 
calculation

Hand 
calculation

Effective horizontal 
stress at z = – 2.5 m 
[kPa]

– 19.29 – 19.23 – 19.29 – 19.31 – 10.72

Effective horizontal 
stress at z = – 5.0 m 
[kPa]

– 38.57
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Figure 5.67 – The bending moments in the basement walls and in the foundation slab, the moment vectors
are perpendicular to the section and the unit is [kNm/m]

GWL 1 left side, GWL 4 right side
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6. Limitations

According to the fact that FEM-Design in the first instance is not only a geotechnical
software there are several limitations and restrictions what the users need to keep in mind when
using  the  software  for  geotechnical  purposes.  In  this  Chapter  the  readers  can  find  severel
comments, recommendations and reviews on these limitations.

The dimensions  of  the  modelled  half-space  of  the  soil  have  important  effect  on the
calculated results. These dimensions in vertical (limit depth) and horizontal directions for an
adequate  FE  model  depend  on  the  type  of  the  foundation  system  (isolated,  wall,  slab  or
compound foundations). The users can find these recommended sizes in several geotechnical
handbooks and papers what were mentioned in this manual. First of all the dimensions have
effect  on the  calculated settlements  of  the structure and secondly the  non-linear  calculation
control parameters (Chapter 4.4.2) also have connection with the applied volume of the soil.

During the modelling of basement walls keep in mind that the friction between the soil
layers and basement walls are neglected in FEM-Design. It means that only the perpendicular
forces from earth and water pressure have effects on the internal forces of basement walls. 

Based on Chapter 4 it is obvious that the computational time is increasing when the users
apply smaller and smaller control parameters by non-linear soil calculations (see Chapter 4.4.2).
The average mesh size has also a very important effect because the stresses (internal forces) are
the  secondary  (slave)  variables  of  FE  calculations.  In  NLS  combination  the  calculated
settlements are very important because the Mohr-Coulomb failure criteria (Chapter 3.2) and the
stress dependency of compression modulus (Chapter 3.3) depend on the calculated stresses at
the  different  load  levels.  According  to  these  information  the  „fine”  calculation  gives  more
accurate results than the „standard” calculation (Chapter 2). In addition, attention should be paid
to the local mesh refinement. Summarizing these effects, the users also need to keep in mind
that the „fine” (quadratic) non-linear computation time with local mesh refinement is increasing
exponentially.  Upon  these  information  during  the  geotechnical  use  of  FEM-Design,  the
convergence analysis is much more relevant than by a usual FE calculation, thus we reccomend
for the user to make a convergence analysis with mesh refinements and with the changing of the
default values on non-linear soil control parameters to reach an adequate results. 

If the users apply the Mohr-Coulomb plasticity theory with dense frictional soils (see
Table 6) smaller control parameters recommended by the non-linear calculations than the default
values („minimal load step” and „volume ratio of plastic elements in one step”, see Chapter
4.4.2) to get the adequate load-bearing capacities.

In  FEM-Design  after  the  definition  of  a  soil  half-space,  the  default  supports  at  the
vertical planes of the soil are fixed horizontally and at the bottom of the soil the support is fixed
vertically. It means that if the user applied an adequate limit depth these boundary conditions are
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sufficient but if the limit depth was shallow or the user modelled the end of the half-space at a
very stiff soil layer a horizontal surface support also needed manually at the bottom of the soil. 

In FEM-Design the users cannot able to define an impermeable layer because FEM-
Design calculation always consider final state respect to time thus the time is not a variable (see
Chapter 3.3). In FEM-Design the user can adjust different ground water levels by different load-
combinations one by one, but only one ground water level is valid for one load-combination. It
means that the user cannot able to adjust two or more ground water levels for the same load-
combination. According to this limitation an overpressured ground water level is not possible in
FEM-Design.
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7. Suggested material parameters for typical soils

The suggested material parameters below are based on [64].
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Table 5 – Typical values of specific weight

Material

Uniform sand 16-21

Well graded sand 17-22

Gravels 17-23

Clays 16-21
Gravelly clays 17-22

Organic clays 14-17

Peat/topsoil 11-14

Specific weight [kN/m3]

Table 6 – Sand strength

Description

Very loose < 28

Loose 28-30

Medium dense 30-40

Dense 40-45

Very dense 45-50
Clayey sand Reduce 5

Gravely sand Increase 5

Friction angle [°]

Table 7 – Clay undrained shear strength

Description
Very soft 0-12

Soft 12-25

Firm 25-50
Stiff 50-100

Very stiff 100-200
Hard > 200

cu [kPa]

Table 8 – Drained sand Young's modulus

Description
Very loose <10
Loose 10-20

Medium dense 20-30
Dense 30-60
Very dense >60

E [MPa]
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Table 9 – Oedometer modulus of clays

Type of clay
Heavily overconsolidated boulder clays >20

Boulder clays, moderately overconsolidated 10-20

3.3-10

Normally consolidated alluvial clays 0.7-3.3

Highly organic alluvial clays and peat <0.7

Eoed [MPa]

Glacial outwash clays, lake deposits, weathered marl, 
lightly to normally consolidated clays

Table 10 – Poisson's ratio for soils

Material (plasticity index)

≤ 0.30 ≤ 0.30
Low PI (<12%) 0.35 0.25

Medium PI (12% < PI < 22%) 0.40 0.30
High PI (22% < PI < 32%) 0.45 0.35

Extremely high PI (PI > 32%) 0.45 0.40

Short term
ν [-]

Long term
ν [-]

Sands, gravels and other 
cohesionless soils
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